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Date Topic Reading HW due

9¢ 4¢ Introduction and Review

94 6 Density Estimation

99 11¢)  Nonparametric Regression I

99 1320  Nonparametric Regression II

94 189  High-dimensional Regression

9¢¥ 20¢! Classification I HW 1 due (9/20)
9¢¥ 252  Classification II

9% 274 Clustering I

104 2 AAFHY

109 49 Clustering II

109 64 Exam 1 HW 2 due (10/6)
10990 I (3FY)

10 11 Probabilistic Graphical Models

10 162 Bayesian Networks I

10 18 Bayesian Networks II

1049 239 Markov Random Fields HW 3 due (10/25)
109 25¢] Unified View of BN and MRF

109 30] Gaussian Network Models

11¥€ 19 Causality I

119 6  Causality II

119 8¢ Exam 2 HW 4 due (11/8)
11¥ 139 Nonparametric Bayesian Inference

11 159 Concentration Inequality

11€ 2020 Minimax Theory I

1149 229! Minimax Theory II HW 5 due (11/24)
1199 272] Conformal Prediction

11€ 2990 Differential Privacy

129 49  Wasserstein Distance and Optimal Transport

129 6¢  High-dimensional Two Sample Testing HW 6 due (12/8)
129 119 Dimension Reduction

129 13¢
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Springer. ISBN 978- 0387310732.
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Module 1 Ze|7 A

Date Topic Reading HW due

0% 4¢ Introduction and Review

9% 6 Density Estimation

9% 11¢]  Nonparametric Regression I

9% 132l  Nonparametric Regression II

9¢ 18d  High-dimensional Regression

94 20  Classification I HW 1 due (9/20)
9% 2521  Classification II

9¢ 279  Clustering I

10 29 AT RY

109 4  Clustering II

109 64 Exam 1 HW 2 due (10/6)



What is Machine Learning?

* A computer program is said to learn from experience E with
respect to some class of tasks T, and performance measure P, if
its performance at tasks in T as measured by P, improves with
experience E. - Tom Michell

 The main goals of machine learning are

* Develop statistical models and estimation procedures that are
scalable (computationally efficient)

 Make effect use of available data (statistically efficient) to make
accurate prediction



Art and Science of ML

* The choice of methodology for a problem is usually based on

iIntuition and experience gained in practice - This is the art part
of ML

* Understanding the nature of models is the science part of ML

e Science can inform art via theoretical analysis of statistical
models to help the choice of models

* |ntuition and experience can give insight into the properties to be
proved



Types of Machine Learning

# “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar
reward given once in a while.

» A few bits for some samples

# Supervised Learning (icing)

» The machine predicts a category
or a few numbers for each input

» Predicting human-supplied data
» 10-10,000 bits per sample

# Unsupervised/Predictive Learning (cake)

» The machine predicts any part of
its input for any observed part.

» Predicts future frames in videos
» Millions of bits per sample

Yann LeCun’s NIPS’16 talk



Supervised Learning

Classification

* In supervised learning, the task T is to learn a mapping f from inputs
(features, predictors, covariates) x € 2 to outputs (labels, targets,
responses) y € ¥.

. The experience E is a set of N pairs & = {(x,,y,)}_,, known as the
training set.

* The performance measure P depends on the type of output.
e If % ={1,2,...,C}, then this is a classification problem.

A common performance measure for classification is the misclassification

1 N
rate Z(0) = — Y 1, # f(x,;0))
=1



Supervised Learning

Fisher’s Iris flowers

* Predictors: sepal length, sepal width, petal length, petal width
 Response: Type of Iris flowers (setosa, Versicolor, Virginica)
« Sample size, N =150,

 Number of predictors, D=4

index sl sw pl pw label
0 51 35 14 0.2 Setosa,
1 49 30 14 0.2 Setosa

50 7.0 3.2 4.7 1.4 Versicolor

149 59 3.0 5.1 1.8 Virginica




Supervised Learning

Fisher’s Iris flowers

* Decision tree and decision boundary
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Supervised Learning

Empirical risk minimization

* Define the erTZI\PIrICEﬂ risk, a generalized performance measure.

Z(0) = 2 Z(y,, f(x,;0)) where £(y,V) is a loss function.

e To fit the best model is to find the optimal parameters that
minimizes the empirical risk on the training set:

Va\

|
) = argmin £ (0) = argmineﬁ Z 2y, f(x,0))

* This is called empirical risk minimization.



Supervised Learning

Regression

« Suppose y € R, then this is known as the regression problem.

* For regression, the common choice of the loss function is the
quadratic loss: Z(y, ) = (y — ).

* Another common choice is the negative log probability:

£y, f(x;0)) = —log p(y | f(x; 0)).

* A simple linear regression can be expressed as follows:

* f(x;0) = b + wx where w is the slope, b is the intercept, and
0= (w,b)



Supervised Learning

Overfitting and generalization

* We can rewrite the empirical risk as follows:

1
Z(0, Dyrain) = D, L0.f(x0))

Daiva:
| Dtrain | (6Y)EDtyain

. Population risk: £ (0; p*) = Ep*(x,y)[f(y,f(x; d))] where p* is the
true joint distribution of (x, y).

* The difference between the population risk and empirical risk is
called the generalization gap.

1
Test risk: Z(0, Diegt) = Y L. f(x:0))
) | Diest | (xy)ED
’ test



Supervised Learning

Overfitting and generalization
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Figure 1.7: (a-c) Polynomials of degrees 2, 14 and 20 fit to 21 datapoints (the same data as in Figure 1.5).
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(d) MSE vs degree. Generated by code at figures.probml.ai/book1/1.7.




Supervised Learning
No free lunch (NFL) theorem

* No free lunch theorem: there is no single best model that works
optimally for all kinds of problems.

* |t is important to have many models and algorithms so we can
choose the best model from them.

* A good model should have small sample complexity for many
distributions p*.

 Sample complexity: the number of training-samples that it needs
In order to successfully learn a target function.



Unsupervised Learning

Clustering

 What is a cluster?
 Mode by the mean shift algorithm

* |Level set by density-based clustering
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Figure 1.8: (a) A scatterplot of the petal features from the iris dataset. (b) The result of unsupervised
clustering using K = 3. Generated by code at figures.probml.ai/book1/1.8.



Unsupervised Learning

The curse of dimensionality
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FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical
neighborhood for uniform data in a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction r of the volume of the data,
for different dimensions p. In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.

Elements of Statistical Learning, 2nd edition. p23



Unsupervised Learning

Evaluating unsupervised learning

petal length

petal length

(b)

Figure 1.9: (a) Scatterplot of iris data (first 3 features). Points are color coded by class. (b) We fit a 2d
linear subspace to the 3d data using PCA. The class labels are ignored. Red dots are the original data, black

dots are points generated from the model using & = Wz + u, where z are latent points on the underlying

inferred 2d linear manifold. Generated by code at figures.probml.ai/book1/1.9.



Unsupervised Learning

Evaluating unsupervised learning

A common method for evaluating unsupervised models is to
measure the probability assigned by the model to unseen test
examples.

* The negative log |Ike|lh00d of the data:

L0.9) = ——== ), logp(x|6)
XED




Reinforcement Learning

* Alpha Go!
* The agent has to learn how to interact with its environment.

* The difference from supervised learning is that the agent
receives an occasional reward.

(a) (b)

Figure 1.10: Ezxzamples of some control problems. (a) Space Invaders Atari game. From https: // gym.
openai. com/ envs/ SpaceInvaders-v0/. (b) Controlling a humanoid robot in the MuJuCo simulator so it
walks as fast as possible without falling over. From https: // gym. openai. com/ envs/Humanoid-v2/ .



Statistics vs Machine Learnin

Statistics Computer Science Meaning
estimation learning using data to estimate

an unknown quantity
classification supervised learning predicting a discrete Y from X € X
clustering unsupervised learning putting data into groups
data training sample (X1, Y1), ..., (X, Y
covariates features the X,’s
classifier hypothesis a map from covariates to outcomes
hypothesis subset of a parameter space ©
confidence interval interval that contains unknown quantity

with a prescribed frequency
directed acyclic graph  Bayes net multivariate distribution with
specified conditional
independence relations
Bayesian inference Bayesian inference statistical methods for using data
to update subjective beliefs
frequentist inference statistical methods for producing
point estimates and confidence intervals
with guarantees on frequency behavior
large deviation bounds PAC learning uniform bounds on probability of errors



Think Statistically!

* What does it mean for one classifier to be better than another?
 Why is one classifier better than another?

 Why do some prediction methods work well in certain high
dimensional problem?

 What is the role of the margin or the hard to classify cases?
 What are kernel methods? How do they relate to older methods?
 How do we pick tuning parameters in prediction algorithm?

 Which is more important, choosing a good prediction algorithm or
choosing the tuning parameters within a given algorithm?



Case Study I: The Margin

 |n classification problems, the probability of a misclassification is
R = Pr(sign(f(X) # Y)) = Pr(Yf(X) < 0).

« Here Y € {—1,1} is a binary response variable and f(X) is a
function of a covariate, or feature X.

 The function yf(x) is called the margin. If the margin is small,
then we have a difficult classification problem.

- ‘ > yf(x)

0

Misclassified Marginal Case Correctly Classified
o .



Tsybakov noise condition

* The behavior at the margin is quantified by the Tsybakov noise
condition Pr(|m(x) — 1/2| <) < Ct“.

« Here m(x) = E(Y | X = x) is the regression function and Y=1 if
m(x) > 1/2, otherwise Y=-1.

* If aris large, then the decision boundary {x : m(x) = 1/2}is well
defined!

 Sometimes the assumption is more important than the choice of
method in analyzing data.



Case Study Il: Kernels

» Suppose we observe (X, Y;),...,(X,,Y,) where Y, € {0,1}.

 Define a classifier as ff)llows: .
h(X) =

0if [| X — X || > IIX = X,ll.
+ Here X, is the average of X; with Y, = k.

« We can improve the above classifier with transformation ¢.

 Define the kernel k(x, z) = < ¢(x), Pp(z) > .



Case Study Il: Kernels

e With a kernlel tricl(<),(v)ve can define a new classifier
if p > Do+ C,
hX) = { P1 Po

O |fﬁ1(X) <ﬁ0 T— C.
where p;(x) = Z k(x, X)/|I] and I, = {i : Y; = k}.

icl,
- A common choice of the kernel is k(x, 7) = exp( —||x — z||/26?)

* |n this case, the above classifier is equivalent to LDA.

 Furthermore, there is a hidden tuning parameter o in the
Gaussian kernel.



