인공지능을 위한 이론과 모델링 Introduction

서울대 통계학과 장원철

• 장원철

- 25동 323호
- wcjang@snu.ac.kr
- Office Hours: 수 오후 2-4시

• 김건희

- 302동 327호
- gunhee@snu.ac.kr

• 김지수

- 25동 212호
- jkim82133@snu.ac.kr
- Office Hours: 수 오후 2-4시

• 신민섭

- jpoth1729@snu.ac.kr
- 25동 402호
- Module 1& 3 담당

과목 홈페이지

- eTL: 숙제, 시험, 각종 공지사항
- Github (https://sfamsnu.github.io/fall23/): 강의노트
- 강의노트는 반드시 본인이 프린트를 한 후 가지고 올 것!

강의구성

Date	Topic	Reading	HW due
9월 4일	Introduction and Review		
9월 6일	Density Estimation		
9월 11일	Nonparametric Regression I		
9월 13일	Nonparametric Regression II		
9월 18일	High-dimensional Regression		
9월 20일	Classification I		HW 1 due $(9/20)$
9월 25일	Classification II		
9월 27일	Clustering I		
10월 2일	임시공휴일		
10월 4일	Clustering II		
10월 6일	Exam 1		HW 2 due $(10/6)$
10월 9일	한글날 (공휴일)		
10월 11일	Probabilistic Graphical Models		
10월 16일	Bayesian Networks I		
10월 18일	Bayesian Networks II		
10월 23일	Markov Random Fields		HW 3 due $(10/25)$
10월 25일	Unified View of BN and MRF		
10월 30일	Gaussian Network Models		
11월 1일	Causality I		
11월 6일	Causality II		
11월 8일	Exam 2		HW 4 due $(11/8)$
11월 13일	Nonparametric Bayesian Inference		
11월 15일	Concentration Inequality		
11월 20일	Minimax Theory I		
11월 22일	Minimax Theory II		HW 5 due $(11/24)$
11월 27일	Conformal Prediction		
11월 29일	Differential Privacy		
12월 4일	Wasserstein Distance and Optimal Transport		
12월 6일	High-dimensional Two Sample Testing		HW 6 due $(12/8)$
12월 11일	Dimension Reduction		
12월 13일	Exam 3		

- 3개의 Module로 구성
- Module I : 장원철
- Module 2 : 김건희
- Module 3 : 김지수

- 숙제 (20%): 격주 총 6회
 - 과제의 프로그래밍 부분은 R 또는 파이썬을 사용하여 제출한다.
- 시험 (75%)
 - 10월 6일 (금) 6-8pm
 - 11월 8일 (수) 6-8pm
 - 12월 13일 (수) 6-8pm
- 출석/수업참여 (5%)

- 수리통계 1 (326.311)
- 데이터 마이닝 방법 및 실습 (326.413)/기계학습 개론(4190.428)

- Bishop, C. (2006). <u>Pattern Recognition and Machine Learning</u>. Springer. ISBN 978-0387310732.
- Murphy, K. (2021). <u>Probabilistic Machine Learning: An Introduction</u>. MIT Press. ISBN 978-0-262-046824
- Shalev-Shwartz and Ben-David (2014). <u>Understanding Machine</u> <u>Learning: From Theory to Algorithms.</u> Cambridge University Press. ISBN 978-1107057135.
- Wasserman, L. (2004). All of Statistics: <u>Concise Course in Statistical</u> <u>Inference</u>. Springer. ISBN 978-0387402727.
- Wasserman, L. (2005). <u>All of Nonparametric Statistics.</u> Springer. ISBN 978-0387251455.
- Zhang, T. (2023). <u>Mathematical Analysis of Machine Learning</u> <u>Algorithms.</u> Cambridge University Press. ISBN 978-1009098380

온라인 수업시간에 준수해야 할 사항

- 수업시간에 다른사람과 대화등으로 수업을 방해하지 않는다.
- 수업에 늦으면 다른 학생들에게 방해되지 않게 조용하게 들어와 앉는다.
- 전자기기(아이패드, 갤럭시 탭, 노트북 등)는 필기용으로 사용하는 때에만 수업 시간에 사용할 수 있다. 휴대폰은 어떤 경우에서 사용을 금지한다.
- 특별한 이유없이 결석이 잦을 경우 수업참여 점수가 0점처리된다.

장발장 vs 레미제라블

Module 1

Module 1 강의구성

Date	Topic	Reading	HW due
9월 4일	Introduction and Review		
9월 6일	Density Estimation		
9월 11일	Nonparametric Regression I		
9월 13일	Nonparametric Regression II		
9월 18일	High-dimensional Regression		
9월 20일	Classification I		HW 1 due $(9/20)$
9월 25일	Classification II		
9월 27일	Clustering I		
10월 2일	임시공휴일		
10월 4일	Clustering II		
10월 6일	Exam 1		HW 2 due $(10/6)$

What is Machine Learning?

- A computer program is said to learn from experience E with respect to some class of tasks T, and performance measure P, if its performance at tasks in T as measured by P, improves with experience E. - Tom Michell
- The main goals of machine learning are
 - Develop statistical models and estimation procedures that are scalable (computationally efficient)
 - Make effect use of available data (statistically efficient) to make accurate prediction

Art and Science of ML

- The choice of methodology for a problem is usually based on intuition and experience gained in practice - This is the art part of ML
- Understanding the nature of models is the science part of ML
- Science can inform art via theoretical analysis of statistical models to help the choice of models
- Intuition and experience can give insight into the properties to be proved

Types of Machine Learning

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ▶ 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

Yann LeCun's NIPS'16 talk

Supervised Learning Classification

- In supervised learning, the task *T* is to learn a mapping *f* from inputs (features, predictors, covariates) $x \in \mathcal{X}$ to outputs (labels, targets, responses) $y \in \mathcal{Y}$.
- The experience *E* is a set of *N* pairs $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$, known as the training set.
- The performance measure *P* depends on the type of output.
- If $\mathcal{Y} = \{1, 2, \dots, C\}$, then this is a classification problem.
- A common performance measure for classification is the misclassification rate $\mathscr{L}(\theta) \equiv \frac{1}{N} \sum_{i=1}^{N} I(y_n \neq f(x_n; \theta))$

Supervised Learning

Fisher's Iris flowers

- Predictors: sepal length, sepal width, petal length, petal width
- Response: Type of Iris flowers (setosa, Versicolor, Virginica)
- Sample size, N = 150,
- Number of predictors, D=4

index	\mathbf{sl}	\mathbf{sw}	$_{\rm pl}$	$\mathbf{p}\mathbf{w}$	label
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	\mathbf{Setosa}
50	7.0	3.2	4.7	1.4	Versicolor
149	5.9	3.0	5.1	1.8	Virginica

Supervised Learning

Fisher's Iris flowers

Decision tree and decision boundary

Supervised Learning Empirical risk minimization

- Define the empirical risk, a generalized performance measure. $\mathscr{L}(\theta) \equiv \frac{1}{N} \sum_{i=1}^{N} \ell(y_n, f(x_n; \theta)) \text{ where } \ell(y, \hat{y}) \text{ is a loss function.}$
- To fit the best model is to find the optimal parameters that minimizes the empirical risk on the training set:

$$\hat{\theta} = \operatorname{argmin}_{\theta} \mathscr{L}(\theta) = \operatorname{argmin}_{\theta} \frac{1}{N} \sum_{n=1}^{N} \mathscr{\ell}(y_n, f(x_n, \theta))$$

• This is called **empirical risk minimization**.

Supervised Learning Regression

- Suppose $y \in R$, then this is known as the regression problem.
- For regression, the common choice of the loss function is the quadratic loss: $\ell(y, \hat{y}) = (y \hat{y})^2$.
- Another common choice is the negative log probability: $\ell(y, f(x; \theta)) = -\log p(y | f(x; \theta)).$
- A simple linear regression can be expressed as follows:
- $f(x; \theta) = b + wx$ where w is the slope, b is the intercept, and $\theta = (w, b)$

Supervised Learning Overfitting and generalization

- We can rewrite the empirical risk as follows: $\mathscr{L}(\theta, D_{\text{train}}) = \frac{1}{|D_{\text{train}}|} \sum_{(x,y) \in D_{\text{train}}} \mathscr{L}(y, f(x; \theta))$
- Population risk: $\mathscr{L}(\theta; p^*) \equiv E_{p^*(x,y)}[\ell(y, f(x; \theta))]$ where p^* is the true joint distribution of (x, y).
- The difference between the population risk and empirical risk is called the generalization gap.

• Test risk:
$$\mathscr{L}(\theta, D_{\text{test}}) = \frac{1}{|D_{\text{test}}|} \sum_{(x,y) \in D_{\text{test}}} \mathscr{\ell}(y, f(x; \theta))$$

Supervised Learning

Overfitting and generalization

Figure 1.7: (a-c) Polynomials of degrees 2, 14 and 20 fit to 21 datapoints (the same data as in Figure 1.5). (d) MSE vs degree. Generated by code at figures.probml.ai/book1/1.7.

Supervised Learning No free lunch (NFL) theorem

- No free lunch theorem: there is no single best model that works optimally for all kinds of problems.
- It is important to have many models and algorithms so we can choose the best model from them.
- A good model should have small sample complexity for many distributions p^* .
- Sample complexity: the number of training-samples that it needs in order to successfully learn a target function.

Unsupervised Learning Clustering

- What is a cluster?
 - Mode by the mean shift algorithm
 - · Level set by density-based clustering

Figure 1.8: (a) A scatterplot of the petal features from the iris dataset. (b) The result of unsupervised clustering using K = 3. Generated by code at figures.probml.ai/book1/1.8.

Unsupervised Learning The curse of dimensionality

FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical neighborhood for uniform data in a unit cube. The figure on the right shows the side-length of the subcube needed to capture a fraction r of the volume of the data, for different dimensions p. In ten dimensions we need to cover 80% of the range of each coordinate to capture 10% of the data.

Unsupervised Learning

Evaluating unsupervised learning

Figure 1.9: (a) Scatterplot of iris data (first 3 features). Points are color coded by class. (b) We fit a 2d linear subspace to the 3d data using PCA. The class labels are ignored. Red dots are the original data, black dots are points generated from the model using $\hat{x} = Wz + \mu$, where z are latent points on the underlying inferred 2d linear manifold. Generated by code at figures.probml.ai/book1/1.9.

Unsupervised Learning Evaluating unsupervised learning

- A common method for evaluating unsupervised models is to measure the probability assigned by the model to unseen test examples.
- The negative log likelihood of the data: $\mathscr{L}(\theta, \mathscr{D}) = -\frac{1}{|\mathscr{D}|} \sum_{x \in \mathscr{D}} \log p(x | \theta).$

Reinforcement Learning

- Alpha Go!
- The **agent** has to learn how to interact with its environment.
- The difference from supervised learning is that the agent receives an occasional **reward**.

Figure 1.10: Examples of some control problems. (a) Space Invaders Atari game. From https://gym. openai.com/envs/SpaceInvaders-v0/. (b) Controlling a humanoid robot in the MuJuCo simulator so it walks as fast as possible without falling over. From https://gym.openai.com/envs/Humanoid-v2/.

Statistics vs Machine Learning

Statistics	Computer Science	Meaning
estimation	learning	using data to estimate
		an unknown quantity
classification	supervised learning	predicting a discrete Y from $X \in \mathcal{X}$
clustering	unsupervised learning	putting data into groups
data	training sample	$(X_1, Y_1), \ldots, (X_n, Y_n)$
covariates	features	the X_i 's
classifier	hypothesis	a map from covariates to outcomes
hypothesis		subset of a parameter space Θ
confidence interval		interval that contains unknown quantity
		with a prescribed frequency
directed acyclic graph	Bayes net	multivariate distribution with
		specified conditional
		independence relations
Bayesian inference	Bayesian inference	statistical methods for using data
		to update subjective beliefs
frequentist inference		statistical methods for producing
		point estimates and confidence intervals
		with guarantees on frequency behavior
large deviation bounds	PAC learning	uniform bounds on probability of errors

Think Statistically!

- What does it mean for one classifier to be better than another?
- Why is one classifier better than another?
- Why do some prediction methods work well in certain high dimensional problem?
- What is the role of the *margin* or the hard to classify cases?
- What are kernel methods? How do they relate to older methods?
- How do we pick tuning parameters in prediction algorithm?
- Which is more important, choosing a good prediction algorithm or choosing the tuning parameters within a given algorithm?

Case Study I: The Margin

- In classification problems, the probability of a misclassification is $R = \Pr(\text{sign}(f(X) \neq Y)) = \Pr(Yf(X) < 0).$
- Here $Y \in \{-1,1\}$ is a binary response variable and f(X) is a function of a covariate, or feature *X*.
- The function yf(x) is called the margin. If the margin is small, then we have a difficult classification problem.

Tsybakov noise condition

- The behavior at the margin is quantified by the Tsybakov noise condition $Pr(|m(x) 1/2| \le t) \le Ct^{\alpha}$.
- Here $m(x) = \mathbb{E}(Y|X = x)$ is the regression function and Y=1 if m(x) > 1/2, otherwise Y=-1.
- If α is large, then the decision boundary $\{x : m(x) = 1/2\}$ is well defined!
- Sometimes the assumption is more important than the choice of method in analyzing data.

Case Study II: Kernels

- Suppose we observe $(X_1, Y_1), ..., (X_n, Y_n)$ where $Y_i \in \{0, 1\}$.
- Define a classifier as follows: $h(X) = \begin{cases} 1 \text{ if } \|X - \bar{X}_1\| \le \|X - \bar{X}_0\|, \\ 0 \text{ if } \|X - \bar{X}_1\| > \|X - \bar{X}_0\|. \end{cases}$
- Here \bar{X}_k is the average of X_i with $Y_i = k$.
- We can improve the above classifier with transformation ϕ .
- Define the kernel $k(x, z) = \langle \phi(x), \phi(z) \rangle$.

Case Study II: Kernels

• With a kernel trick, we can define a new classifier $h(X) = \begin{cases} 1 \text{ if } \hat{p}_1(X) \geq \hat{p}_0 + c, \\ 0 \text{ if } \hat{p}_1(X) < \hat{p}_0 + c. \end{cases}$

where
$$\hat{p}_k(x) = \sum_{i \in I_k} k(x, X_j) / |I_k|$$
 and $I_k = \{i : Y_i = k\}$.

- A common choice of the kernel is $k(x, z) = \exp(-||x z||/2\sigma^2)$
- In this case, the above classifier is equivalent to LDA.
- Furthermore, there is a hidden tuning parameter σ in the Gaussian kernel.