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The lecture note is a minor modification of the lecture notes from Prof. Larry Wasserman’s “Statistical Machine
Learning”.

When doing estimation, we usually provide confidence intervals in addition to point estimates. Is there a sim-
ilar notion for predictions? The answer is yes: we provide prediction sets or set-valued predictions. Given data
(X1, Y1), . . . , (Xn, Yn) we construct a set-valued function Cn, depending on (X1, Y1), . . . , (Xn, Yn) such that

P (Yn+1 ∈ Cn(Xn+1)) ≥ 1− α.

The approach we consider in these notes is conformal prediction. The idea is due to [5]. The statistical theory for
conformal prediction was developed in [2], [3], [1], [4]. See Figure 1 for an illustration of the conformal prediction.

The Unsupervised Case.

We begin with the following problem. We observe Y1, . . . , Yn and we want to predict Yn+1. The basic algorithm is
as follows:

1. Observe Y1, . . . , Yn.

2. Define a permutation invariant residual function (or conformity score) Ri = ϕ(y,A) where A is any dataset
of size n+ 1.

3. For each y:

(a) Set Yn+1 = y and form the augmented dataset A = {Y1, . . . , Yn+1}.
(b) Let Ri = ϕ(Yi,A) for i = 1, . . . , n+ 1.

(c) Test the hypothesis H0 : Yn+1 = y by computing the p-value

π(y) =
1

n+ 1

n+1∑
i=1

I(Ri ≥ Rn+1).

(d) Invert the test: set
Cn = {y : π(y) ≥ α}.

Note that when H0 is true, the residuals are exchangeable and the p-value is uniform. Therefore, we have:

Theorem. For every P ,
P (Yn+1 ∈ Cn) ≥ 1− α.

If P is absolutely continuous, we also have P (Yn+1 ∈ Cn) ≤ 1− α+ 1
n+1 .

Note that this result is distribution-free and holds for all finite samples.
A simple example of a residual function is

Ri =

∣∣∣∣Yi −
Y1 + · · ·+ Yn+1

n+ 1

∣∣∣∣ .
A more complicated residual is

Ri =
1

p̂h(Yi)
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Figure 1: An illustration of a conformal prediction. For this figure, P (Yn+1 ∈ f̂(Xn+1)± q̂u(Xn+1)) ≥ 1−α. Source:
https://towardsdatascience.com/conformal-prediction-4775e78b47b6

where p̂h is a kernel density estimator constructed from the augmented data.
The coverage validity of the prediction set does not depend on the choice of residual. But a poor choice can

lead to large prediction sets. A careful choice can lead to minimax optimal sets. For example, suppose that P has
a density p. Let tα be such that P (Y ∈ C∗) = 1− α where C∗ = {y : p(y) ≥ tα}. Note that C∗ is the smallest set
such that P (Y ∈ C) = 1− α. Suppose that p ∈ Holder(β) and that there exist c1, c2 and γ such that

c1|ϵ|γ ≤ |P (p(Y ) ≤ tα + ϵ)− ϵ| ≤ c2|ϵ|γ

for all small ϵ. In this case, any prediction set must satisfy µ(C∗∆Cn) ≥ rn with high probability, where µ is
Lebesgue, ∆ is Lebesgue measure and

rn =

(
log n

n

) βγ
2β+d

.

Theorem. The conformal set Cn based on the kernel density estimator (with appropriate bandwidth) satisfies

P (µ(Cn∆C∗) ≥ rn) ≤
(
1

n

)λ

for any λ > 0.

For a proof, see [2]. Thus, in this case, Cn is minimax under the stated conditions. But Cn still has 1−α coverage
even if the conditions fail. In fact, Cn has 1− α coverage even if P does not have a density.

We can also used a parametric model (pθ : θ ∈ Θ). One choice of residual is 1/pθ̂(Yi) where θ̂ is the (augmented)
mle. If the model is wrong, we still have a valid prediction set but the set might be large.

Splitting.

The algorithm above requires that we test H0 : Yn+1 = y for every y. In practice, we only consider a grid of values
for y. But this can be slow. The split conformal method is much faster. The steps are:

1. Split the data into two sets D1 and D2.

2. Compute the residuals Ri = ϕ(Yi,D1) for Yi ∈ D1.

3. Let q be the 1− α quantile of the residuals.
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4. Return Cn = {y : ϕ(y,D1) ≤ q}.

It is not hard to show that, once again we have

P (Yn+1 ∈ Cn) ≥ 1− α

for all P . The split conformal method is fast but can result in larger prediction sets. Also, it depends on the
particular split of the data. We might consider combining several splits. Suppose that we split the data N times.
For each split we construct a prediction set Cj at level 1 − α/N . Define C† =

⋂N
j=1 Cj . It follows from the union

bound that C† is valid at level 1−α. There are two effects: replacing α with α/N makes each set larger. But taking
the intersection makes the set smaller. Unfortunately it can be shown that, under fairly general conditions, that the
Lebesgue measure of C† is larger than the set constructed with one split, with probability tending to 1. So there
seems to be no advantage to suing several splits.

Regression.

The extension to regression is straightforward. The data are {(X1, Y1), . . . , (Xn, Yn)}. We augment the data with a
new point (x, y). Again we define a residual Ri = ϕ((Xi, Yi),A) and we define

π(x, y) =
1

n+ 1

∑
i

I(Ri ≥ Rn+1).

Then we set Cn(x) = {y : π(x, y) ≥ α}. We then have

P (Yn+1 ∈ Cn(Xn+1)) ≥ 1− α

for every P .
An example of a residual is

Ri = |Yi − m̂(Xi)|

where m̂ is based on the augmented data. The validity holds even if the model is wrong. Again we can use splitting
to speed up the calculations.

Note that the coverage guarantees are marginal. Under regularity conditions it can be shown that we get
asymptotic conditional covage, that is,

P (Yn+1 ∈ Cn(x)|Xn+1 = x) → 1− α.

It is not possible to get finite sample, distribution-free conditional coverage as shown on [3].
We can apply this method to high dimensional and nonparametric regression. The nice thing is that we do not

need the model to be correct. To see how well it works, see Figures 2, 3 and 4. (These are from [1].)

Classification.

The extension to classification is straightforward. The only change is the choice of residual. An example of such a
score is 1/p̂(Yi|Xi). Another example is the nearest neighbor score

Ri =
mini: Yi=y ||x−Xi||
mini: Yi ̸=y ||x−Xi||

.

One complication is that sometimes Cn(x) = ∅. Some methods for fixing this are discussed in [4]. On the other
hand, if one uses the score 1/p̂(Xi|Yi) then Cn(x) = ∅ when Xi is an outlier i.e. we have not seen a datapoint like
Xi before. This can be a feature rather than a bug.
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Figure 2: Example: n = 200, d = 2, 000; linear and Normal
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Figure 3: Example: n = 200, d = 2, 000; nonlinear and heavy-tailed
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Figure 4: Example: n = 200, d = 2, 000; linear, correlated, heteroskedastic, heavy-tailed
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