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The lecture note is a minor modification of the lecture notes from Prof. Larry Wasserman’s “Statistical Machine
Learning”.

Protecting privacy while performing statistical analysis is quite challenging. On the one had, the goal of statistics
and machine learning is to be as informative as possible. Protecting privacy is the opposite goal.

How do we formally define privacy? Can we protect privacy and still do an informative analysis? We address
these questions in these notes.

The definition of privacy that has become most common lately is differential privacy (Dwork et al 2006).

1 Randomized Response
The predecessor to differential privacy is randomized response which is a method used in surveys. It was proposed
by Warner in 1965.

I want to know how many students have ever cheated on a test. Suppose that proportion is p. If I ask this
question I will not get truthful responses. I tell everyone to flip a coin C with P (C = 1) = θ and P (C = 0) = 1− θ.
To protect their privacy, I tell them: if the coin is tails answer YES and if the coin is heads answer the question
“have you every cheated?” The observation Y is thus Y = (1 − C) + CZ where Z = 1 if they have cheated and
Z = 0 otherwise. So π ≡ P (Y = 1) is π = (1− θ)+ θp so that p = (π−1+ θ)/θ. I can then estimate p by estimating
π.

2 Differential Privacy
Suppose we have a dataset X1, . . . , Xn where Xi ∈ X . Knowing the sample space X explicitly is critical for differ-
ential privacy. The data set D = {X1, . . . , Xn} is in Xn. Our goal is to report some function Z = T (D) of the data.
We will be using some sort of randomization to do this. That is, we will take Z ∼ Q(·|X1, . . . , Xn).

Two datasets D and D’s are neighbors if they differ in one random variable. In other words,

D = {X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn} and D′ = {X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn}.

In this case we write D ∼ D′.
We say that Q satisfies ϵ-differential privacy if

Q(Z ∈ A|D) ≤ eϵQ(Z ∈ A|D′)

for all A and all pairs D ∼ D′. If Q has density q this means that

sup
z

q(z|D)

q(z|D′)
≤ eϵ.

See Figure 1 for an illustration.
What does the definition mean? It means that whether you are in or not in the database has little affect on the

output Z. For example, suppose I think you are person i in the database and I want to guess if you value is Xi = a
or Xi = b. Before I see any information, suppose my odds are P (Xi = a)/P (Xi = b). After I see Z,

P (Xi = a|Z)
P (Xi = b|Z)

=
p(z|Xi = a)

p(z|Xi = b)

P (Xi = a)

P (Xi = b)
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Figure 1: An illustration of a differential privacy. When database A and A′ are neighbors, then there functionals T (A)
and T (A′) are also similar. Source: https://www.statice.ai/post/what-is-differential-privacy-definition-mechanisms-
examples

and so
e−ϵP (Xi = a)

P (Xi = b)
≤ P (Xi = a|Z)
P (Xi = b|Z)

≤ eϵ
P (Xi = a)

P (Xi = b)
.

Since eϵ ≈ 1 + ϵ and ϵ is small, we see that knowing Z does not change my odds much. It is also possible to show
that we cannot construct any test with non-trivial power about what your value of Xi is.

So, when differential privacy holds, we cannot learn much about whether a particular person is in the dataset.

3 Queries
The computer science model of privacy is that some curator keeps the data and users send queries about the data.
The goal is to release answers that are differentially private.

Let f be a function of the data and define the sensitivity

∆ = sup
D∼D′

|f(D)− f(D′)|.

Suppose we release
Z = f(D) +W

where f(w) ∝ e−w/λ. Note that W has a Laplace distribution with standard deviation
√
2λ. If we set λ = ∆/ϵ then

p(z|D)

p(z|D′)
≤ e|f(D)−f(D′)|/λ ≤ eϵ

so that differential privacy holds.
For example, suppose that X1, . . . , Xn ∈ [−B,B] and that f(D) = X. Then ∆ = 2B/n so we need to add noise

with standard deviation O(B/(nϵ)). As a function of n this is good. As a function of B it is bad.
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4 How Informative is Z?
Obviously we lose information when we use differential privacy.

As an extreme example, suppose the data are on [0, 1] and suppose the true distribution F is a point mass at
x ∈ [0, 1]. So the dataset is X = (X1, . . . , Xn) = (x, x, . . . , x). Suppose we output Z1, . . . , Zk from a differentially
private Q(Z|X). Let F̂ be the empirical distribution of Z. Then it can be shown that F̂ must be inconsistent, that
is, there exists δ > 0 such that,

lim inf
n→∞

P (sup
s

|F (s)− F̂ (s)| > δ) > 0.

See Blum, Ligett and Roth (2008) and Wasserman and Zhou (2010).
Barber and Duchi (2014) studied differential privacy from the minimax point of view. Suppose we observe

X1, . . . , Xn ∼ P where Xi ∈ [0, 1]d. Consider the simple task of estimating the mean µ. If we ignore privacy, then
we can use X which is risk E[||X − µ||2] ⪯ d/n. They showed that any differentially private estimator µ̃ satisfies
the lower bound

E[||µ̃− µ||2] ⪰ d

n
+

d3

n2ϵ2
=
d

n

[
1 +

d2

nϵ2

]
.

So the price we pay for privacy is d3

n2ϵ2 which is quite steep.

5 Releasing a Whole Dataset
Statisticians have been less enthusiastic about differential privacy than computer scientists. One of the reasons for
this is the heavy dependence on the notion of using privatized queries. The idea that we would analyze data by
sending queries to a curator is unrealistic. Real data analysis involves: looking at the data, fitting models, testing
fit, making predictions, constructing confidence sets etc. This requires access to the whole data set. This leads to
the following questions. Can we release a privatized version of the whole dataset? In fact, there are several ways to
do this.

5.1 Exponential Mechanism
The exponential mechanism, due to McSherry and Talwar (2007), is a general method for preserving differential
privacy. Here, I’ll discuss the special case where we want to release a private data set Z = (Z1, . . . , Zk). Let ξ(x, y)
be some function that measures the distance between two data sets x = (x1, . . . , xn) and z = (z1, . . . , zk). Define
the sensitivity

∆ = sup
x∼y

sup
z

|ξ(x, z)− ξ(y, z)|.

Now draw Z = (Z1, . . . , Zk) from the density

q(z|x) ∝ exp

(
−ϵξ(x, z)

2∆

)
.

It is easy to check that this satisfies ϵ-differential privacy.
As an example, suppose that X is compact and define ξ(x, z) = supt |Fx(t)− Fz(t)| = ||Fx − Fz||∞ where Fx is

the empirical cdf of x = (x1, . . . , xn) and Fz is the empirical cdf of z = (z1, . . . , zk). So ξ is the Kolmogorov-Smirnov
distance. In this case, ∆ = 1/n and so we draw z from the density

q(z|x) ∝ exp

(
−nϵ||Fx − Fz||∞

2

)
.

Wasserman and Zhou (2010) showed that, for this scheme, the optimal choice of k is k ≍ n2/3 and that ||F−Fz||∞ =
OP (n

−1/3). Without privacy we have ||F − Fx||∞ = OP (n
−1/2). So we see that we have lost accuracy.

More generally, they showed that

P (||F − Fz||∞ > δ) ≤ (supx p(x))
ke−3ϵδn/16

S(k, δ/2)

where S(k, δ/2) is the small ball probability, that is P (||F − Fz|| ≤ δ/2). However, it is not known if these bound
are tight.
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5.2 Density Estimation I
Another way to release a privatized dataset is to compute a privatized density estimate p̂. Then we can draw a
sample Z1, . . . , ZN ∼ p̂. It is easy to show that if p̂ is differentially private then so is Z = (Z1, . . . , ZN ).

Dwork et al (2006) suggested using a privatized histogram which was analyzed in Wasserman and Zhou (2010).
Suppose that the data are on [0, 1]d. Divide the space into m = 1/hd bins B1, . . . , Bm and form the usual histogram
estimator

p̂(x) =
∑
j

p̂j
hd
I(x ∈ Bj)

where p̂j = Cj/n and Cj is the number of observations in bin Bj . To privatize p̂, define

q̂(x) =
∑
j

q̂j
hd
I(x ∈ Bj)

where q̂j = D̃j/
∑

s D̃s, D̃j = max{Dj , 0} and Dj = Cj + νj where νj is drawn from a Laplace density with mean
0 and variance 8/ϵ2. Wasserman and Zhou (2010) showed that, if X has a Lipschitz density, and if we choose
m ≍ nd/(2+d) the histogram of the privatized density achieves the minimax rate n−2/(2+d). So in this case, there is
no loss in rate by releasing the privatized data or the privatized histogram.

However, the minimax rate is not the whole story. Suppose that the original histogram p̂ is sparse i.e. has many
empty cells. The privatized histogram q̂ is forced to “fill in” these empty cells. So in these cases, q̂ will look very
different from p̂. In particular, much of the clustering structure will be lost. And if there is any lower dimensional
structure in the data, this will be destroyed.

5.3 Density Estimation II
A second approach is based on orthogonal series. For simplicity assume that X = [0, 1]. Write

p(x) = 1 +

∞∑
j=1

βjψj(x)

where {1, ψ1, ψ2, . . . , } is an orthonormal basis. Suppose that
∑

j β
2
j j

2γ ≤ C2. This is a Sobolev ellipsoid. The
minimax rate is n−2γ/(2γ+1).

The usual density estimator in this framework is

p̂(x) = 1 +

m∑
j=1

β̂jψj(x)

where m = n1/(2γ+1) and β̂j = n−1
∑

i ψj(Xi) which achieves the minimax rate. A privatized estimator is

q̂(x) = 1 +

m∑
j=1

(β̂j + νj)ψj(x)

where νj is Laplace with mean 0 and standard deviation mc0/(nϵ) where c0 = supj supx |ψj(x)|. It turns out that
q̂ also achieves the minimax rate.

5.4 Density Estimation III
The most commonly used density estimator is the kernel density estimator

p̂(x) =
1

n

∑
i

1

hd
K

(
x−Xi

h

)
.

Is there a way to privatize p̂?
This is trickier than histograms and orthogonal series estimators since p̂ is not easily described by a finite set

of parameters. In principle, we want to draw a random function g such that P (g ∈ A|D) ≤ eϵP (g ∈ A|D′). But the
sets A are now subsets of some function space and it is not immediately clear how to do this.
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So far, I know of only two ways to do this. Hall, Rinaldo and Wasserman (2013) suggested using

g = p̂+
C

nϵhd/2
G

where C is an appropriate constant and G is a mean 0 Gaussian process with a certain covariance structure. The
resulting density estimator g is very wiggly but it does satisfy differential privacy. Moreover, it has the same rate
of convergence as the original density estimator.

A second approach was recently presented by Alda and Rubinstein (2017). The first create a grid on the sample
space. Next, the approximate p̂ using Bernstein polynomials. Then the add Laplace noise to the coefficients of the
polynomials.

I should add that the methods in Hall, Rinaldo and Wasserman (2013) and Alda and Rubinstein (2017) are quite
general and can be used for the private release of fairly general functions. In fact, Alda and Rubinstein (2017) also
apply their approach to classification, logistic regression and empirical risk minimization. They also provide a lower
bound which shows that we must, in general, introduce an error of size ∆/ϵ when privately releasing a function,
where ∆ is the sensitivity defined earlier.

6 Conclusion
Differential privacy (DP) is a very active area of research. Here is a summary of the strengths of this approach:

1. DP gives a very rigorous, precise notion of privacy.

2. Many methods in machine learning and statistics can be made differentially private.

3. DP can be used for other purposes. For example, Dwork et al (2015) created a method called reusable hold-
out that allows and interactive approach to data analysis while making repeated looks at the data without
introducing too much bias. The hear of the method is to impose a sort of differential privacy on each step of
the analysis.
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