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The lecture note is a minor modification of the lecture notes from Prof. Larry Wasserman’s “Statistical Machine
Learning”.

1 Introduction
We observe two iid sample

X1, . . . , Xn ∼ P, Y1, . . . , Ym ∼ Q

where Xi, Yi ∈ Rd. We want to test
H0 : P = Q versus H1 : P ̸= Q.

Throughout, we will assume that n/(n+m) → π ∈ (0, 1) as the sample size increases.
In low dimensions, there are many tests with good power. For example, we could use the test statistic

T = sup
t

|F̂n(t)− Ĝn(t)|

where F̂n and Ĝn are the empirical cdf’s. To find the α-level critical value we can use asymptotic theory or
permutation testing. But there are other approaches for the high-dimensional case.

Why are we interested in two-sample testing? We might be interested in testing whether two groups are the
same for scientific reasons (treatment versus control, for example). Two sample testing can also be used to screen
features for classification.

2 Metrics
One way to define a test is to first define a metric between distributions. For example

d(P,Q) = sup
g∈G

∣∣∣∫ gdP −
∫
gdQ

∣∣∣
for some class of functions G. Here are some examples. If G = {g : ||g||∞ ≤ 1} then d(P,Q) is the total variation
distance. If G is the set of g such that

sup
x ̸=y

|g(y)− g(x)|
||x− y||

≤ 1

then d(P,Q) is the earth-mover distance (or Wasserstein distance). This is equivalent to infR ER||X − Y || where
the infimum is over all joint distributions R for (X,Y ) with marginals P and Q. If G = {I(−∞,t] : t ∈ Rd} then
d(P,Q) is the Kolmogorov-Smirnov distance. See [5] for more examples.

In general, estimating d(P,Q) is difficult. But if we take G to be a RKHS defined by a kernel K, it can be shown
that

θ = d2(P,Q) =

∫ ∫
K(x, y)dP (x)dP (y) +

∫ ∫
K(x, y)dQ(x)dQ(y)− 2

∫ ∫
K(x, y)dP (x)dQ(y).

The plus-in estimator of d2(P,Q) is

T =
2

n(n− 1)

∑
i<j

K(Xi, Xj) +
2

m(m− 1)

∑
i<j

K(Yi, Yj)−
2

nm

∑
i,j

K(Xi, Yj).
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A related distance is the energy distance (Szekeley 1989, 2002) defined by

d2(P,Q) = 2E[||X − Y ||]− E[||X −X ′||]− E[||Y − Y ′||].

The advantage of the energy distance is that there is no tuning parameter. (The RKHS distance actually requires
a bandwidth.) The sample estimate is

2

n1n2

∑
i

∑
j

||Xi − Yj || −
1

n21

∑
i

∑
j

||Xi −Xj || −
1

n22

∑
i

∑
j

||Yi − Yj ||.

How do we know when to reject H0? One approach is to find the limiting distribution of T under H0. This turns
out to be, for the RKHS distance,

T ⇝ 2

∞∑
j=1

λj(Z
2
j − 1)

where the Zj ’s are N(0,1) and the λj ’s are the eigenvalues defined by∫
L(x, y)ψj(x)dP (x) = λjψj(y)

where L(x, y) = K(x, y)−E[K(x,X)]−E[K(X,x)]+E[K(X,Y )]. This distribution is called a Gaussian chaos. This
distribution has infinitely many nuisance parameters which makes it un-usable. Instead, we use the permutation
distribution to choose the critical value.

It can be shown that
T − d2(P,Q) = OP

(
1√
N

)
where N = n ∧m. Thus, it appears that the quality of T does not depend on the dimension! This is false. What
matters here is the power. As we shall see below, the minimax power, that is the smallest detectable difference, is(

1

N

) 2β
4β+d

where β is the smoothness. This was proved by Arias-Castro, Pelletier and Saligrama (2016) based on techniques
developed by Ingster (1987). We’ll discuss this more below.

The problem is that the kernel is hiding a lot. To see this, note that T is essentially the same as∫
(p̂h(x)− q̂h(x))

2

where p̂h and q̂h are kernel density estimators. This test was proposed by Anderson, Hall and Titterington (1994).
But remember, the kernel has a tuning parameter. If it is Gaussian, there is a bandwidth. The statement T −
d(P,Q) = OP (1/

√
N) assumes we do not change the bandwidth. But to have good power, we need to let the

bandwidth go to zero and we no longer have the fast rate. The power of the RKHS test in general, nonparametric
settings is not well studied.

Now suppose we want a confidence interval for θ = d2(P,Q). Unfortunately, there is no known practical method
if we use the above estimator. However, we can use the idea in [2] to get a simple (but statistically inefficient)
method. Instead of using a U -statistic, we break the sample into blocks of size two. For simplicity, assume that
n1 = n2 = n. Define

θ̂ =
2

n

∑
j

h
(
(X2j−1, Y2j−1), (X2j , Y2j)

)
≡ 1

m

∑
j

Rj

where m = n/2 and

h((xi, yi), (xj , yj)) = K(Xi, Xj) +K(Yi, Yj)−K(Xi, Yj)−K(Xj , Yi).

It follows from the CLT and Slutzky’s theorem that
√
m(θ̂ − θ)/s ⇝ N(0, 1) where s2 is the sample variance of

R1, . . . , Rm. Hence, an asymptotic 1− α confidence interval is θ̂ ± szα/2/
√
m.
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3 Graph Based Tests
Another class of tests is based on geometric graphs. Let Z1, . . . , ZN be the combined sample where N = n+m. Let
Li = 1 if Zi is from group 1 and Li = 2 if Zi is from group 2.

Let Ni be the k-nearest neighbors of Zi. Define

T =
1

nk

n∑
i=1

k∑
r=1

Bj(r)

whereBj(r) = 1 if the rth nearest neighbor has the same label as Zi. This corresponds to forming a k nearest neighbor
graph and asking how many of the k nearest neighbors are from the same group as the node. The probability of
getting the same label under H0 is µ = π2 + (1− π)2.

It can be shown that, under H0, √
nk(T − µ)

σ
⇝ N(0, 1).

The proof is difficult because the test statistic is summing quantities that are not dependent. The variance σ2

is known but is very, very complicated. See Schilling (1986a, 1986b). In practice, we can use the permutation
distribution to get the critical value. Under H1, the mean of T converges to

θ = 1− 2π(1− π)

∫
p(x)q(x)

πp(x) + (1− π)q(x)
dx

which is a distance between p and q. In my experience, this test works well even with k = 1.
In high-dimensions we need to correct the test to account for some strange effects [3]. If P concentrates its data

on a ring R and Q concentrates its data on a larger ring S that surrounds R, then every point in Q can be closer
to a point from P .

Here is an example. Let’s take k = 1 and n = m. Let Bi = 1 if its nearest neighbor is from the same group. The
test statistic is T = n−1

∑
iBi. We are testing

H0 : P (Bi) =
1

2
versus H1 : P (Bi) >

1

2
.

Suppose that X1, X2 ∼ N(µ1, σ
2
1I) and Y1, Y2 ∼ N(µ2, σ

2
2I). Take µ1 = (a, . . . , a) and µ2 = (b, . . . , b). Now,

1

d
||X1 −X2||2

P→ 2σ2
1 ,

1

d
||Y1 − Y2||2

P→ 2σ2
2 ,

1

d
||X1 − Y2||2

P→ σ2
1 + σ2

2 + (a− b)2.

Let a = 0, b = 0.2, σ2
1 = 1, σ2

2 = 1.2. Then

2σ2
1 < σ2

1 + σ2
2 + (a− b)2 < 2σ2

2 .

Every observation from Q is closer to an observation from P .
The data will look like this:

X1 X2 . . . Xn Y1 Y2 . . . Yn
Bi 1 1 . . . 1 0 0 . . . 0

We will not reject H0 in this case since (2n)−1
∑

iBi = 1/2. The problem is that P (Bi = 1|Li = 1) = 1 and
P (Bi = 1|Li = 2) = 0 but P (Bi = 1) = 1/2. However, if we do a two-sided test, separately within each group, we
would reject. [3] suggest taking

U = (T1 − θ)2 + (T2 − θ)2

where Tj = (nk)−1
∑

i:Li=j

∑
Zj∈Ni

I(Li = Lj). However, this test can have low power in other cases. The best
strategy is to use both tests i.e. W = T ∨ U .

A similar test, called the cross-match test, was defined by by [4]. We take the pooled sample and partition the
data into pairs W1 = (Z1, Z2),W2 = (Z3, Z4), . . .. The partition is chosen to minimize

∑
j ||Z2j − Z2j−1||2. Let

T =
∑
i

Ai
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where Ai = 1 if the ith pair has differing labels (i.e. (0,1) or (1,0)) and Ai = 0 otherwise. We reject when T is small.
The exact distribution of T under H0 is known; it is hypergeometric. It can accurately be approximated with a
N(µ, σ2) where

µ =
mn

(N − 1)
, σ2 =

2n(n− 1)m(m− 1)

(N − 3)(N − 1)2
.

This accurate, simple limiting distribution for T under the null is the main advantage of this test. However, seems
to have less power than the NN test. Also, the distribution of T under H1 is not known. We could have defined
T =

∑
iBi where Bi = 1−Ai and and rejected when T is large. This is then the same as the k-NN test with k = 1

except that we allow no overlap between groups.

4 Smooth Tests
Neyman (1937) introduced a method for testing that takes advantage of smoothness. First, consider one dimensional
data Y1, . . . , Yn ∼ P . Suppose we want to test

H0 : P = Uniform(0, 1) H1 : P ̸= Uniform(0, 1).

If we want to have power against smooth alternatives, Neyman proposed that we define

pθ(x) = c(θ) exp

 k∑
j=1

θjψj(x)


where ψ1, ψ2, . . . , are orthonormal functions and

c(θ) =
1∫

exp
(∑k

j=1 θjψj(x)
)
dx
.

The null hypothesis corresponds to θ = (θ1, . . . , θk) = (0, . . . , 0). One way to test H0 is to use the likelihood ratio
test T = 2(ℓ(θ̂)− ℓ(0)). Under H0, T ⇝ χ2

k. But Neyman pointed out that there is a computationally easier test,

U = n
∑
j

ψ
2

j

where
ψj =

1

n

∑
i

ψj(Xi).

This also has the property that, under H0, U ⇝ χ2
k. But it avoids having to deal with the normalizing constant.

Now we move to the two-sample case. Let F (t) = P (X ≤ t) and G(t) = Q(Y ≤ t). Let Z = F (Y ). Then the cdf
of Z is

H(z) = P(Z ≤ z) = P(F (Y ) ≤ z) = P(Y ≤ R(z)) = G(R(z))

where R(z) = F−1(z). Under H0, Z ∼ Unif(0, 1). Now H has density

ρ(z) =
q(F−1(z))

p(F−1(z))

and ρ(z) = 1 under H0. Bera, Ghosh and Xiao (2013) suggest using the family

ρθ(z) = c(θ) exp

 k∑
j=1

θjψj(x)

 .

Their test statistic is mψ
T
ψ where

ψj =
1

m

∑
i

ψj(Vi)

and Vi = F̂n(Yi). Bera, Ghosh and Xiao (2013) prove that the statistic again has a limiting χ2
k distribution.
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Zhou, Zheng and Zhang (arXiv:1509.03459) considered the high-dimensional case. The consider all one-dimensional
projections of the data. There test is

T =

√
nm

n+m
sup
u
T (u)

where the supremum is over the d− 1-dimensional sphere and T (u) is the Bera-Ghosh-Xiao statistic based on the
one-dimensional data uTYi. They also allow the parameter k to be chosen from the data. (In fact, they maximize
the test over k.)

The limiting distribution of T under H0 is complicated: it is the supremum of a Gaussian process. Tow get a
practical test there are two possibilities. One is to use permutations. The other is based on a version of the bootstrap
called the multiplier bootstrap. Their simulations suggest that this test works well. But it is unclear how it compares
to the other tests.

5 Histogram Test
Under smoothness assumptions and compact support, Ingster (1987) showed that optimal tests can be obtained
using histograms. Arias-Castro, Pelletier and Saligrama (2016) extended this to the multivariate case. Assume
smoothness level β. For simplicity let m = n. Form a histogram with N ≈ n2/(4β+1) bins. Set

T =
∑
j

(Cj −Dj)
2

where Cj is the number of Xi’s in bin j and let Dj is the number of Yi’s in bin j. We reject for T large. This test
is, in theory, optimal. In fact, Ingster later showed that the test can be made adaptive to the degree of smoothness.

6 Sparsity
Let us write

Xi = (Xi(1), . . . , Xi(d)), Yi = (Yi(1), . . . , Yi(d)).

In some cases, we might suspect that P and Q only differ in a few features. In other words, there is sparsity. If so,
the easiest thing is to do all the one-dimensional marginal tests and a Bonferroni correction. Let Tj be your favorite
one dimensional test applied to the jth feature only. The the statistic to be T = ∨jTj . This test will have good
power in the sparse case and it is very easy to compute.

7 Minimax Theory
What does it mean for a test to be optimal? Just as there is a theory for minimax estimation, there is also a theory
for minimax testing. We discussed this a few weeks ago. I’ll remind you of a few basic facts.

To keep it simple, suppose that m = n. We want to test H0 : P = Q. Let P be a set of distributions and assume
that P,Q ∈ P.

Recall that a level α test is a function ϕ of the data taking values 0 or 1 such that P (ϕ = 1) ≤ α for every
P ∈ H0. Let Φn denote all level α tests. The minimax type II error, for a set of distributions P is

βn(ϵ) = inf
ϕ∈Φn

sup
P,Q

Pn(ϕ = 0)

where the supremum is over all P,Q ∈ P such that d(P,Q) > ϵ. Fix any small δ > 0. We say that the minimax
separation is ϵn if ϵ < ϵn implies that βn(ϵ) ≥ δ.

If P is the β smoothness class and d is the L2 distance between densities, then Arias-Castro, Pelletier and
Saligrama (2016) show that

ϵn ≍
(
1

n

) 2β
4β+d

.

The minimax risk is achieved by the histogram test.
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8 Discrete Distributions
Suppose that Xi and Yi are discrete random variables taking values in {1, . . . , d}. Let

Cj = #{Xi = j}, Dj = #{Yi = j}.

Let C = (C1, . . . , Cd) and D = (D1, . . . , Dd). These are multinomial and we can test H0 : P = Q using a likelihood
ratio test or χ2 test.

But when d is large, the usual tests might have poor power. Improved tests have been developed by [1] and Di-
akonikolas and Kane (2016). for example. Moreover, these tests are designed to have good power against alternatives
with respect to total variation distance. For example, [1] propose the test statistic

T =
∑
j

(Cj −Dj)
2 − (Cj +Dj)

Cj +Dj
.

We reject when T is large. The prove that this test has good power as long as TV(P,Q) > d1/4/
√
n which is the

minimax bound.
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