
Minimax

김지수 (Jisu KIM)

인공지능을 위한 이론과 모델링, 2023 가을학기

The lecture note is a minor modification of the lecture notes from Prof. Larry Wasserman’s “Statistical Machine
Learning”.

1 Introduction
When solving a statistical learning problem, there are often many procedures to choose from. This leads to the
following question: how can we tell if one statistical learning procedure is better than another? One answer is provided
by minimax theory which is a set of techniques for finding the minimum, worst case behavior of a procedure.

2 Definitions and Notation
Let P be a set of distributions and let X1, . . . , Xn be a sample from some distribution P ∈ P. Let θ(P ) be some
function of P . For example, θ(P ) could be the mean of P , the variance of P or the density of P . Let θ̂ = θ̂(X1, . . . , Xn)
denote an estimator. Given a metric d, the minimax risk is

Rn ≡ Rn(P) = inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))]

where the infimum is over all estimators. The sample complexity is

n(ϵ,P) = min
{
n : Rn(P) ≤ ϵ

}
.

Example. Suppose that P = {N(θ, 1) : θ ∈ R} where N(θ, 1) denotes a Gaussian with mean θ and variance 1.
Consider estimating θ with the metric d(a, b) = (a− b)2. The minimax risk is

Rn = inf
θ̂

sup
P∈P

EP [(θ̂ − θ)2]. (1)

In this example, θ is a scalar.
Let (X1, Y1), . . . , (Xn, Yn) be a sample from a distribution P . Let m(x) = EP (Y |X = x) =

∫
y dP (y|X = x) be

the regression function. In this case, we might use the metric d(m1,m2) =
∫
(m1(x)−m2(x))

2dx in which case the
minimax risk is

Rn = inf
m̂

sup
P∈P

EP
[∫

(m̂(x)−m(x))2
]
. (2)

In this example, θ is a function.

Notation. Recall that the Kullback-Leibler distance between two distributions P0 and P1 with densities p0 and p1
is defined to be

KL(P0, P1) =

∫
log

(
dP0

dP1

)
dP0

∫
log

(
p0(x)

p1(x)

)
p0(x)dx.

The appendix defines several other distances between probability distributions and explains how these distances
are related. We write a ∧ b = min{a, b} and a ∨ b = max{a, b}. If P is a distribution with density p, the product
distribution for n iid observations is Pn with density pn(x) =

∏n
i=1 p(xi). It is easy to check that KL(Pn0 , P

n
1 ) =

nKL(P0, P1). For positive sequences an and bn we write an = Ω(bn) to mean that there exists C > 0 such that
an ≥ Cbn for all large n. an ≍ bn if an/bn is strictly bounded away from zero and infinity for all large n; that is,
an = O(bn) and bn = O(an).
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3 Bounding the Minimax Risk
Usually, we do not find Rn directly. Instead, we find an upper bound Un and a lower bound Ln on Rn. To find an
upper bound, let θ̂ be any estimator. Then

Rn = inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≤ sup
P∈P

EP [d(θ̂, θ(P ))] ≡ Un. (3)

So the maximum risk of any estimator provides an upper bound Un. Finding a lower bound Ln is harder. We will
consider three methods: the Le Cam method, the Fano method and Tsybakov’s bound. If the lower and upper bound
are close, then we have succeeded. For example, if Ln = cn−α and Un = Cn−α for some positive constants c, C and
α, then we have established that the minimax rate of convergence is n−α.

All the lower bound methods involve a the following trick: we reduce the problem to a hypothesis testing problem.
It works like this. First, we will choose a finite set of distributions M = {P1, . . . , PN} ⊂ P. Then

Rn = inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥ inf
θ̂

max
Pj∈M

Ej [d(θ̂, θj)] (4)

where θj = θ(Pj) and Ej is the expectation under Pj . Let s = minj ̸=k d(θj , θk). By Markov’s inequality,

P (d(θ̂, θ) > t) ≤ E[d(θ̂, θ)]
t

and so
E[d(θ̂, θ)] ≥ tP (d(θ̂, θ) > t).

Setting t = s/2, and using (4), we have

Rn ≥ s

2
inf
θ̂

max
Pj∈M

Pj(d(θ̂, θj) > s/2).

Given any estimator θ̂, define
ψ∗ = argminjd(θ̂, θj).

Now, if ψ∗ ̸= j then, letting k = ψ∗,

s ≤ d(θj , θk) ≤ d(θj , θ̂) + d(θk, θ̂)

≤ d(θj , θ̂) + d(θj , θ̂) since ψ∗ ̸= j implies that d(θ̂, θk) ≤ d(θ̂, θj)

= 2d(θj , θ̂).

So ψ∗ ̸= j implies that d(θj , θ̂) ≥ s/2. Thus

Pj(d(θ̂, θj) > s/2) ≥ Pj(ψ
∗ ̸= j) ≥ inf

ψ
Pj(ψ ̸= j)

where the infimum is over all maps ψ form the data to {1, . . . , N}. (We can think of ψ is a multiple hypothesis
test.) Thus we have

Rn ≥ s

2
inf
ψ

max
Pj∈M

Pj(ψ ̸= j).

We can summarize this as a theorem:

Theorem. Let M = {P1, . . . , PN} ⊂ P and let s = minj ̸=k d(θj , θk). Then

Rn = inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥
s

2
inf
ψ

max
Pj∈M

Pj(ψ ̸= j).

Getting a good lower bound involves carefully selecting M = {P1, . . . , PN}. If M is too big, s will be small. If
M is too small, then maxPj∈M Pj(ψ ̸= j) will be small.
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4 Distances
We will need some distances between distributions. Specifically,

Total Variation TV (P,Q) = supA |P (A)−Q(A)|
L1 ∥P −Q∥1 =

∫
|p− q|

Kullback-Leibler KL(P,Q) =
∫
p log(p/q)

χ2 χ2(P,Q) =
∫ (

p
q − 1

)2
dQ =

∫
p2

q − 1

Hellinger H(P,Q) =
√∫

(
√
p−√

q)2.

We also define the affinity between P and Q by

a(P,Q) =

∫
(p ∧ q).

There are many relationships between these quantities. These are summarized in the next two theorems. We
leave the proofs as exercises.

Theorem. The following relationships hold:

1. TV(P,Q) = 1
2 ∥P −Q∥1 = 1− a(P,Q). (Scheffés Theorem.)

2. TV(P,Q) = P (A)−Q(A) where A = {x : p(x) > q(x)}.

3. 0 ≤ H(P,Q) ≤
√
2.

4. H2(P,Q) = 2(1− a(P,Q)).

5. a(P,Q) ≥ 1
2a

2(P,Q) = 1
2

(
1− H2(P,Q)

2

)2
. (Le Cam’s inequalities.)

6. 1
2H

2(P,Q) ≤ TV(P,Q) = 1
2 ∥P −Q∥1 ≤ H(P,Q)

√
1− H2(P,Q)

4 .

7. TV(P,Q) ≤
√
KL(P,Q)/2. (Pinsker’s inequality.)

8.
∫
(log dP/dQ)+dP ≤ KL(P,Q) +

√
KL(P,Q)/2.

9. a(P,Q) ≥ 1
2e

−KL(P,Q).

10. TV(P,Q) ≤ H(P,Q) ≤
√
KL(P,Q) ≤

√
χ2(P,Q).

Let Pn denote the product measure based on n independent samples from P .

Theorem. The following relationships hold:

1. H2(Pn, Qn) = 2
(
1−

(
1− H2(P,Q)

2

)n)
.

2. a(Pn, Qn) ≥ 1
2a

2(Pn, Qn) = 1
2

(
1− 1

2H
2(P,Q)

)2n.
3. a(Pn, Qn) ≥

(
1− 1

2 ∥P −Q∥1
)n.

4. KL(Pn, Qn) = nKL(P,Q).
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5 Lower Bound Method 1: Le Cam
Theorem. Let P be a set of distributions. For any pair P0, P1 ∈ P,

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥
s

4

∫
[pn0 (x) ∧ pn1 (x)]dx =

s

4

[
1− TV(Pn0 , P

n
1 )
]

where s = d(θ(P0), θ(P1)). We also have:

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥
s

8
e−nKL(P0,P1) ≥ s

8
e−nχ

2(P0,P1)

and

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥
s

8

(
1− 1

2

∫
|p0 − p1|

)2n

.

Corollary. Suppose there exist P0, P1 ∈ P such that KL(P0, P1) ≤ log 2/n. Then

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥
s

16
,

where s = d(θ(P0), θ(P1)).

Proof. Let θ0 = θ(P0), θ1 = θ(P1) and s = d(θ0, θ1). First suppose that n = 1 so that we have a single observation
X. From Theorem 3,

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥
s

2
π

where
π = inf

ψ
max
j=0,1

Pj(ψ ̸= j).

Since a maximum is larger than an average,

π = inf
ψ

max
j=0,1

Pj(ψ ̸= j) ≥ inf
ψ

P0(ψ ̸= 0) + P1(ψ ̸= 1)

2
.

Define the Neyman-Pearson test

ψ∗(x) =

{
0 if p0(x) ≥ p1(x)
1 if p0(x) < p1(x).

In Lemma 5 below, we show that the sum of the errors P0(ψ ̸= 0) + P1(ψ ̸= 1) is minimized by ψ∗. Now

P0(ψ∗ ̸= 0) + P1(ψ∗ ̸= 1) =

∫
p1>p0

p0(x)dx+

∫
p0>p1

p1(x)dx

=

∫
p1>p0

[p0(x) ∧ p1(x)]dx+

∫
p0>p1

[p0(x) ∧ p1(x)]dx =

∫
[p0(x) ∧ p1(x)]dx.

Thus,
P0(ψ∗ ̸= 0) + P1(ψ∗ ̸= 1)

2
=

1

2

∫
[p0(x) ∧ p1(x)]dx.

Thus we have shown that
inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥
s

4

∫
[p0(x) ∧ p1(x)]dx.

Now suppose we have n observations. Then, replacing p0 and p1 with pn0 (x) =
∏n
i=1 p0(xi) and pn1 (x) =

∏n
i=1 p1(xi),

we have
inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥
s

4

∫
[pn0 (x) ∧ pn1 (x)]dx.

In Lemma 5 below, we show that
∫
p ∧ q ≥ 1

2e
−KL(P,Q). Since KL(Pn0 , P

n
1 ) = nKL(P0, P1), we have

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥
s

8
e−nKL(P0,P1).

The other results follow from the inequalities on the distances.
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Lemma. Let ψ∗ be the Neyman-Pearson test. For any test ψ,

P0(ψ = 1) + P1(ψ = 0) ≥ P0(ψ
∗ = 1) + P1(ψ

∗ = 0).

Proof. Recall that p0 > p1 when ψ∗ = 0 and that p0 < p1 when ψ∗ = 1. So

P0(ψ = 1) + P1(ψ = 0) =

∫
ψ=1

p0(x)dx+

∫
ψ=0

p1(x)dx

=

∫
ψ=1,ψ∗=1

p0(x)dx+

∫
ψ=1,ψ∗=0

p0(x)dx+

∫
ψ=0,ψ∗=0

p1(x)dx+

∫
ψ=0,ψ∗=1

p1(x)dx

≥
∫
ψ=1,ψ∗=1

p0(x)dx+

∫
ψ=1,ψ∗=0

p1(x)dx+

∫
ψ=0,ψ∗=0

p1(x)dx+

∫
ψ=0,ψ∗=1

p0(x)dx

=

∫
ψ∗=1

p0(x)dx+

∫
ψ∗=0

p1(x)dx

= P0(ψ
∗ = 1) + P1(ψ

∗ = 0).

Lemma. For any P and Q,
∫
p ∧ q ≥ 1

2e
−KL(P,Q).

Proof. First note that, since (a ∨ b) + (a ∧ b) = a+ b, we have∫
(p ∨ q) +

∫
(p ∧ q) = 2. (5)

Hence

2

∫
p ∧ q ≥ 2

∫
p ∧ q −

(∫
p ∧ q

)2
=
(∫

p ∧ q
) [

2−
∫
p ∧ q

]
=
(∫

p ∧ q
) (∫

p ∨ q
)

from (5)

≥
(∫ √

(p ∧ q) (p ∨ q)
)2

Cauchy − Schwartz

=

(∫
√
pq

)2

= exp

(
2 log

∫
√
pq

)
= exp

(
2 log

∫
p
√
q/p

)
≥ exp

(
2

∫
p log

√
q

p

)
= e−KL(P,Q)

where we used Jensen’s inequality in the last inequality.

Example. Consider data (X1, Y1), . . . , (Xn, Yn) where Xi ∼ Uniform(0, 1), Yi = m(Xi) + ϵi and ϵi ∼ N(0, 1).
Assume that

m ∈ M =

{
m : |m(y)−m(x)| ≤ L|x− y|, for all x, y ∈ [0, 1]

}
.

So P is the set of distributions of the form p(x, y) = p(x)p(y|x) = ϕ(y −m(x)) where m ∈ M.
How well can we estimate m(x) at some point x? Without loss of generality, let’s take x = 0 so the parameter

of interest is θ = m(0). Let d(θ0, θ1) = |θ0 − θ1|. Let m0(x) = 0 for all x. Let 0 ≤ ϵ ≤ 1 and define

m1(x) =

{
L(ϵ− x) 0 ≤ x ≤ ϵ
0 x ≥ ϵ.
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Then m0,m1 ∈ M and s = |m1(0)−m0(0)| = Lϵ. The KL distance is

KL(P0, P1) =

∫ 1

0

∫
p0(x, y) log

(
p0(x, y)

p1(x, y)

)
dydx

=

∫ 1

0

∫
p0(x)p0(y|x) log

(
p0(x)p0(y|x)
p1(x)p1(y|x)

)
dydx

=

∫ 1

0

∫
ϕ(y) log

(
ϕ(y)

ϕ(y −m1(x))

)
dydx

=

∫ ϵ

0

∫
ϕ(y) log

(
ϕ(y)

ϕ(y −m1(x))

)
dydx

=

∫ ϵ

0

KL(N(0, 1), N(m1(x), 1))dx.

Now, KL(N(µ1, 1), N(µ2, 1)) = (µ1 − µ2)
2/2. So

KL(P0, P1) =
L2

2

∫ ϵ

0

(ϵ− x)2dx =
L2ϵ3

6
.

Let ϵ = (6 log 2/(L2n))1/3. Then, KL(P0, P1) = log 2/n and hence, by Corollary 5,

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥
s

16
=
Lϵ

16
=

L

16

(
6 log 2

L2n

)1/3

=
( c
n

)1/3
.

It is easy to show that the regressogram (regression histogram) θ̂ = m̂(0) has risk

EP [d(θ̂, θ(P ))] ≤
(
C

n

)1/3

.

Thus we have proved that
inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≍ n−
1
3 .

The same calculations in d dimensions yield

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≍ n−
1

d+2 .

On the squared scale we have
inf
θ̂

sup
P∈P

EP [d2(θ̂, θ(P ))] ≍ n−
2

d+2 .

Similar rates hold in density estimation.

There is a more general version of Le Cam’s lemma that is sometimes useful.

Lemma. Let P,Q1, . . . , QN be distributions such that d(θ(P ), θ(Qj)) ≥ s for all j. Then

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥
s

4

∫
(pn ∧ qn)

where q = 1
N

∑
j qj.

Example. Let

Yi = θi +
1√
n
Zi, i = 1, . . . , d

where Z1, Z2, . . . , Zd ∼ N(0, 1) and θ = (θ1, . . . , θd) ∈ Θ where Θ = {θ ∈ Rd : ||θ||0 ≤ 1}. Let P = N(0, n−1I). Let
Qj have mean 0 expect that jth coordinate has mean

√
a log d/n where 0 < a < 1. Let q = 1

N

∑
j qj . Some algebra

(good homework question!) shows that χ2(q, p) → 0 as d→ ∞. By the generalized Le Cam lemma, Rn ≥ a log d/n
using squared error loss. We can estimate θ by thresholding (Bonferroni). This gives a matching upper bound.
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6 Lower Bound Method II: Fano
For metrics like d(f, g) =

∫
(f − g)2, Le Cam’s method will usually not give a tight bound. Instead, we use Fano’s

method. Instead of choosing two distributions P0, P1, we choose a finite set of distributions P1, . . . , PN ∈ P.
We start with Fano’s lemma.

Lemma (Fano). Let X1, . . . , Xn ∼ P where P ∈ {P1, . . . , PN}. Let ψ be any function of X1, . . . , Xn taking values
in {1, . . . , N}. Let β = maxj ̸=k KL(Pj , Pk). Then

1

N

N∑
j=1

Pj(ψ ̸= j) ≥
(
1− nβ + log 2

logN

)
.

Now we can state and prove the Fano minimax bound.

Theorem. Let F = {P1, . . . , PN} ⊂ P. Let θ(P ) be a parameter taking values in a metric space with metric d.
Then

inf
θ̂

sup
P∈P

EP
(
d
(
θ̂, θ(P )

))
≥ s

2

(
1− nβ + log 2

logN

)
,

where
s = min

j ̸=k
d (θ(Pj), θ(Pk)) ,

and
β = max

j ̸=k
KL(Pj , Pk).

Corollary (Fano Minimax Bound). Suppose there exists F = {P1, . . . , PN} ⊂ P such that N ≥ 16 and

β = max
j ̸=k

KL(Pj , Pk) ≤
logN

4n
.

Then
inf
θ̂
max
P∈P

EP
[
d
(
θ̂, θ(P )

)]
≥ s

4
.

Proof. From Theorem 3,

Rn ≥ s

2
inf
ψ

max
Pj∈F

Pj(ψ ̸= j) ≥ s

2

1

N

N∑
j=1

Pj(ψ ̸= j),

where the latter is due to the fact that a max is larger than an average. By Fano’s lemma,

1

N

N∑
j=1

Pj(ψ ̸= j) ≥
(
1− nβ + log 2

logN

)
.

Thus,

inf
θ̂

sup
P∈P

EP
(
d
(
θ̂, θ(P )

))
≥ inf

θ̂
max
P∈F

EP
(
d
(
θ̂, θ(P )

))
≥ s

2

(
1− nβ + log 2

logN

)
.

7 Lower Bound Method III: Tsybakov’s Bound
This approach is due to Tsybakov (2009).

Theorem (Tsybakov 2009). Let X1, . . . , Xn ∼ P ∈ P. Let {P0, P1, . . . , PN} ⊂ P where N ≥ 3. Assume that P0 is
absolutely continuous with respect to each Pj. Suppose that

1

N

N∑
j=1

KL(Pj , P0) ≤
logN

16
.

Then
inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥
s

16
,

where
s = max

0≤j<k≤N
d(θ(Pj), θ(Pk)).

7



8 Hypercubes
To use Fano’s method or Tsybakov’s method, we need to construct a finite class of distributions F . Sometimes we
use a set of the form

F =
{
Pω : ω ∈ Ω

}
,

where

Ω =
{
ω = (ω1, . . . , ωm) : ωi ∈ {0, 1}, i = 1, . . . ,m

}
,

which is called a hypercube. There are N = 2m distributions in F . For ω, ν ∈ Ω, define the Hamming distance
H(ω, ν) =

∑m
j=1 I(ωk ̸= νk).

One problem with a hypercube is that some pairs P,Q ∈ F might be very close together which will make
s = minj ̸=k d (θ(Pj), θ(Pk)) small. This will result in a poor lower bound. We can fix this problem by pruning the
hypercube. That is, we can find a subset Ω′ ⊂ Ω which has nearly the same number of elements as Ω but such that
each pair P,Q ∈ F ′ =

{
Pω : ω ∈ Ω′

}
is far apart. We call Ω′ a pruned hypercube. The technique for constructing

Ω′ is the Varshamov-Gilbert lemma.

Lemma (Varshamov-Gilbert). Let Ω =
{
ω = (ω1, . . . , ωN ) : ωj ∈ {0, 1}

}
. Suppose that N ≥ 8. There exists

ω0, ω1, . . . , ωM ∈ Ω such that (i) ω0 = (0, . . . , 0), (ii) M ≥ 2N/8 and (iii) H(ω(j), ω(k)) ≥ N/8 for 0 ≤ j < k ≤M .
We call Ω′ = {ω0, ω1, . . . , ωM} a pruned hypercube.

Proof. Let D = ⌊N/8⌋. Set ω0 = (0, . . . , 0). Define Ω0 = Ω and Ω1 = {ω ∈ Ω : H(ω, ω0) > D}. Let ω1 be any
element in Ω1. Thus we have eliminated {ω ∈ Ω : H(ω, ω0) ≤ D}. Continue this way recursively and at the jth
step define Ωj = {ω ∈ Ωj−1 : H(ω, ωj−1) > D} where j = 1, . . . ,M . Let nj be the number of elements eliminated
at step j, that is, the number of elements in Aj = {ω ∈ Ωj : H(ω, ω(j)) ≤ D}. It follows that

nj ≤
D∑
i=0

(
N
i

)
.

The sets A0, . . . , AM partition Ω and so n0 + n1 + · · ·+ nM = 2N . Thus,

(M + 1)

D∑
i=0

(
N
i

)
≥ 2N .

Thus
M + 1 ≥ 1∑D

i=0 2
−N
(
N
i

) =
1

P
(∑N

i=1 Zi ≤ ⌊m/8⌋
)

where Z1, . . . , ZN are iid Bernoulli (1/2) random variables. By Hoeffding’s inequaity,

P

(
N∑
i=1

Zi ≤ ⌊m/8⌋

)
≤ e−9N/32 < 2−N/4.

Therefore, M ≥ 2N/8 as long as N ≥ 8. Finally, note that, by construction, H(ωj , ωk) ≥ D + 1 ≥ N/8.

Example. Consider data (X1, Y1), . . . , (Xn, Yn) where Xi ∼ Uniform(0, 1), Yi = f(Xi) + ϵi and ϵi ∼ N(0, 1). (The
assumption that X is uniform is not crucial.) Assume that f is in the Holder class F defined by

F =

{
f : |f (ℓ)(y)− f (ℓ)(x)| ≤ L|x− y|β−ℓ, for all x, y ∈ [0, 1]

}

where ℓ = ⌊β⌋. P is the set of distributions of the form p(x, y) = p(x)p(y|x) = ϕ(y−m(x)) where f ∈ F . Let Ω′ be
a pruned hypercube and let

F ′ =

{
fω(x) =

m∑
j=1

ωjϕj(x) : ω ∈ Ω′

}
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where m = ⌈cn
1

2β+1 ⌉, ϕj(x) = LhβK((x − Xj)/h), and h = 1/m. Here, K is any sufficiently smooth function
supported on (−1/2, 1/2). Let d2(f, g) =

∫
(f − g)2. Some calculations show that, for ω, ν ∈ Ω′,

d(fω, fν) =
√
H(ω, ν)Lhβ+

1
2

∫
K2 ≥

√
m

8
Lhβ+

1
2

∫
K2 ≥ c1h

β .

We used the Varshamov-Gilbert result which implies that H(ω, ν) ≥ m/8. Furthermore,

KL(Pω, Pν) ≤ c2h
2β .

To apply Corollary 6, we need to have

KL(Pω, Pν) ≤
logN

4n
.

Now
logN

4n
=

log 2m/8

4n
=

m

32n
=

1

32nh
.

So we set h = (c/n)1/(2β+1). In that case, d(fω, fν) ≥ c1h
β = c1(c/n)

β/(2β+1). Corollary 6 implies that

inf
f̂

sup
P∈P

EP [d(f̂ , f)] ≥ n−
β

2β+1 .

It follows that
inf
f̂

sup
P∈P

EP
∫
(f − f̂)2 ≥ n−

2β
2β+1 .

It can be shown that there are kernel estimators that achieve this rate of convergence. (The kernel has to be chosen
carefully to take advantage of the degree of smoothness β.) A similar calculation in d dimensions shows that

inf
f̂

sup
P∈P

EP
∫

(f − f̂)2 ≥ n−
2β

2β+d .

9 Further Examples

9.1 Parametric Maximum Likelihood
For parametric models that satisfy weak regularity conditions, the maximum likelihood estimator is approximately
minimax. Consider squared error loss which is squared bias plus variance. In parametric models with large samples,
it can be shown that the variance term dominates the bias so the risk of the mle θ̂ roughly equals the variance:1

R(θ, θ̂) = Varθ(θ̂) + bias2 ≈ Varθ(θ̂).

The variance of the mle is approximately Var(θ̂) ≈ 1
nI(θ) where I(θ) is the Fisher information. Hence,

nR(θ, θ̂) ≈ 1

I(θ)
.

For any other estimator θ′, it can be shown that for large n, R(θ, θ′) ≥ R(θ, θ̂). For d-dimensional vectors we have
R(θ, θ̂) ≈ |I(θ)|−1/n = O(d/n).

Here is a more precise statement, due to Hájek and Le Cam. The family of distributions (Pθ : θ ∈ Θ) with
densities (Pθ : θ ∈ Θ) is differentiable in quadratic mean if there exists ℓ′θ such that∫ (

√
pθ+h −

√
pθ −

1

2
hT ℓ′θ

√
pθ

)2

dµ = o(∥h∥2). (6)

Theorem (Hájek and Le Cam). Suppose that (Pθ : θ ∈ Θ) is differentiable in quadratic mean where Θ ⊂ Rk
and that the Fisher information Iθ is nonsingular. Let ψ be differentiable. Then ψ(θ̂n), where θ̂n is the mle, is
asymptotically, locally, uniformly minimax in the sense that, for any estimator Tn, and any bowl-shaped ℓ,

sup
I∈I

lim inf
n→∞

sup
h∈I

Eθ+h/√nℓ
(√

n

(
Tn − ψ

(
θ +

h√
n

)))
≥ E(ℓ(U)),

where I is the class of all finite subsets of Rk and U ∼ N(0, ψ′
θI

−1
θ (ψ′

θ)
T ).

1Typically, the squared bias is order O(n−2) while the variance is of order O(n−1).
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For a proof, see van der Vaart (1998). Note that the right hand side of the displayed formula is the risk of the
mle. In summary: in well-behaved parametric models, with large samples, the mle is approximately minimax.

9.2 Estimating a Smooth Density
Here we use the general strategy to derive the minimax rate of convergence for estimating a smooth density. (See
Yu (2008) for more details.)

Let F be all probability densities f on [0, 1] such that

0 < c0 ≤ f(x) ≤ c1 <∞, |f ′′(x)| ≤ c2 <∞.

We observe X1, . . . , Xn ∼ P where P has density f ∈ F . We will use the squared Hellinger distance d2(f, g) =∫ 1

0
(
√
f(x)−

√
g(x))2dx as a loss function.

Upper Bound. Let f̂n be the kernel estimator with bandwidth h = n−1/5. Then, using bias-variance calcula-
tions, we have that

sup
f∈F

Ef

(∫
(f̂(x)− f(x))2dx

)
≤ Cn−4/5,

for some C. But ∫
(
√
f(x)−

√
g(x))2dx =

∫ (
f(x)− g(x)√
f(x) +

√
g(x)

)2

dx ≤ C ′
∫
(f(x)− g(x))2dx, (7)

for some C ′. Hence supf Ef (d2(f, f̂n)) ≤ Cn−4/5 which gives us an upper bound.
Lower Bound. For the lower bound we use Fano’s inequality. Let g be a bounded, twice differentiable function

on [−1/2, 1/2] such that∫ 1/2

−1/2

g(x)dx = 0,

∫ 1/2

−1/2

g2(x)dx = a > 0,

∫ 1/2

−1/2

(g′(x))2dx = b > 0.

Fix an integer m and for j = 1, . . . ,m define xj = (j − (1/2))/m and

gj(x) =
c

m2
g(m(x− xj))

for x ∈ [0, 1] where c is a small positive constant. Let M denote the Varshamov-Gilbert pruned version of the set{
fτ = 1 +

m∑
j=1

τjgj(x) : τ = (τ1, . . . , τm) ∈ {−1,+1}m
}
.

For fτ ∈ M, let fnτ denote the product density for n observations and let Mn =
{
fnτ : fτ ∈ M

}
. Some calculations

show that, for all τ, τ ′,

KL(fnτ , f
n
τ ′) = nKL(fτ , fτ ′) ≤ C1n

m4
≡ β. (8)

By Lemma 8, we can choose a subset F of M with N = ec0m elements (where c0 is a constant) and such that

d2(fτ , fτ ′) ≥ C2

m4
≡ α (9)

for all pairs in F . Choosing m = cn1/5 gives β ≤ logN/4 and d2(fτ , fτ ′) ≥ C2

n4/5 . Fano’s lemma implies that

max
j

Ejd2(f̂ , fj) ≥
C

n4/5
.

Hence the minimax rate is n−4/5 which is achieved by the kernel estimator. Thus we have shown that Rn(P) ≍ n−4/5.
This result can be generalized to higher dimensions and to more general measures of smoothness. Since the proof

is similar to the one dimensional case, we state the result without proof.
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Theorem. Let Z be a compact subset of Rd. Let F(p, C) denote all probability density functions on Z such that∫ ∑∣∣∣∣ ∂p

∂zp11 · · · ∂zpdd
f(z)

∣∣∣∣2 dz ≤ C,

where the sum is over al p1, . . . , pd such that
∑
j pj = p. Then there exists a constant D > 0 such that

inf
f̂

sup
f∈F(p,C)

Ef
∫
(f̂n(z)− f(z))2dz ≥ D

(
1

n

) 2p
2p+1

.

The kernel estimator (with an appropriate kernel) with bandwidth hn = n−1/(2p+d) achieves this rate of convergence.

9.3 Minimax Classification
Let us now turn to classification. We focus on some results of Yang (1999), Tsybakov (2004), Mammen and Tsybakov
(1999), Audibert and Tsybakov (2005) and Tsybakov and van de Geer (2005).

The data are Z = (X1, Y1), . . . , (Xn, Yn) where Yi ∈ {0, 1}. Recall that a classifier is a function of the form
h(x) = I(x ∈ G) for some set G. The classification risk is

R(G) = P(Y ̸= h(X)) = P(Y ̸= I(X ∈ G)) = E(Y − I(X ∈ G))2. (10)

The optimal classifier is h∗(x) = I(x ∈ G∗) where G∗ = {x : m(x) ≥ 1/2} and m(x) = E(Y |X = x). We are
interested in how close R(G) is to R(G∗). Following Tsybakov (2004) we define

d(G,G∗) = R(G)−R(G∗) = 2

∫
G∆G∗

∣∣∣∣m(x)− 1

2

∣∣∣∣ dPX(x) (11)

where A∆B = (A ∩Bc) ∪ (Ac ∪B) and PX is the marginal distribution of X.
There are two common types of classifiers. The first type are plug-in classifiers of the form ĥ(x) = I(m̂(x) ≥ 1/2)

where m̂ is an estimate of the regression function. The second type are empirical risk minimizers where ĥ is taken
to be the h that minimizes the observed error rate n−1

∑n
i=1(Yi ̸= h(Xi)) as h varies over a set of classifiers H.

Sometimes one minimizes the error rate plus a penalty term.
According to Yang (1999), the classification problem has, under weak conditions, the same order of difficulty

(in terms of minimax rates) as estimating the regression function m(x). Therefore the rates are given in Example
??. According to Tsybakov (2004) and Mammen and Tsybakov (1999), classification is easier than regression. The
apparent discrepancy is due to differing assumptions.

To see that classification error cannot be harder than regression, note that for any m̂ and corresponding Ĝ

d(G, Ĝ) = 2

∫
G∆Ĝ

∣∣m(x)− 1
2

∣∣ dPX(x)

≤ 2

∫
|m̂(x)−m(x)|dPX(x) ≤ 2

√∫
(m̂(x)−m(x))2dPX(x),

so the rate of convergence of d(G,G∗) is at least as fast as the regression function.
Instead of putting assumptions on the regression function m, Mammen and Tsybakov (1999) put an entropy

assumption on the set of decision sets G. They assume

logN(ϵ,G, d) ≤ Aϵ−ρ,

where N(ϵ,G, d) is the smallest number of balls of radius ϵ required to cover G. They show that , if 0 < ρ < 1, then
there are classifiers with rate

sup
P

E(d(Ĝ,G∗)) = O(n−1/2),

independent of dimension d. Moreover, if we add the margin (or low noise) assumption

PX
(
0 <

∣∣m(X)− 1
2

∣∣ ≤ t
)
≤ Ctα for all t > 0,

we get
sup
P

E(d(Ĝ,G∗)) = O
(
n−(1+α)/(2+α+αρ)

)
,

which can be nearly 1/n for large α and small ρ. The classifiers can be taken to be plug-in estimators using local
polynomial regression. Moreover, they show that this rate is minimax.
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9.4 Estimating a Large Covariance Matrix
Let X1, . . . , Xn be iid Gaussian vectors of dimension d. Let Σ = (σij)1≤i,j≤d be the d × d covariance matrix for
Xi. Estimating Σ when d is large is very challenging. Sometimes we can take advantage of special structure. Bickel
and Levina (2008) considered the class of covariance matrices Σ whose entries have polynomial decay. Specifically,
Θ = Θ(α, ϵ,M) is all covariance matrices Σ such that 0 < ϵ ≤ λmin(Σ) ≤ λmax(Σ) ≤ 1/ϵ and such that

max
j

∑
i

{
|σij | : |i− j| > k

}
≤Mk−α,

for all k. The loss function is ∥Σ̂− Σ∥ where ∥ · ∥ is the operator norm

∥A∥ = sup
x: ∥x∥2=1

∥Ax∥2.

Bickel and Levina (2008) constructed an estimator that that converges at rate (log d/n)α/(α+1). Cai, Zhang and
Zhou (2009) showed that the minimax rate is

min

{
n−2α/(2α+1) +

log d

n
,
d

n

}
,

so the Bickel-Levina estimator is not rate minimax. Cai, Zhang and Zhou then constructed an estimator that is
rate minimax.

9.5 Semisupervised Prediction
Suppose we have data (X1, Y1), . . . , (Xn, Yn) for a classification or regression problem. In addition, suppose we have
extra unlabelled data Xn+1, . . . , XN . Methods that make use of the unlabeled are called semisupervised methods.
We discuss semisupervised methods in another Chapter.

When do the unlabeled data help? Two minimax analyses have been carried out to answer that question, namely,
Lafferty and Wasserman (2007) and Singh, Nowak and Zhu (2008). Here we briefly summarize the results of the
latter.

Suppose we want to estimate m(x) = E(Y |X = x) where x ∈ Rd and y ∈ R. Let p be the density of X. To use
the unlabelled data we need to link m and p in some way. A common assumption is the cluster assumption: m is
smooth over clusters of the marginal p(x). Suppose that p has clusters separated by a amount γ and that m is α
smooth over each cluster. Singh, Nowak and Zhu (2008) obtained the following upper and lower minimax bounds
as γ varies in 6 zones which we label I to VI. These zones relate the size of γ and the number of unlabeled points:

γ semisupervised supervised unlabelled data help?
upper bound lower bound

I n−2α/(2α+d) n−2α/(2α+d) NO
II n−2α/(2α+d) n−2α/(2α+d) NO
III n−2α/(2α+d) n−1/d YES
IV n−1/d n−1/d NO
V n−2α/(2α+d) n−1/d YES
VI n−2α/(2α+d) n−1/d YES

The important message is that there are precise conditions when the unlabeled data help and conditions when
the unlabeled data do not help. These conditions arise from computing the minimax bounds.

9.6 Graphical Models
Elsewhere in the book, we discuss the problem of estimating graphical models. Here, we shall briefly mention some
minimax results for this problem. Let X be a random vector from a multivariate Normal distribution P with mean
vector µ and covariance matrix Σ. Note that X is a random vector of length d, that is, X = (X1, . . . , Xd)

T . The d×d
matrix Ω = Σ−1 is called the precision matrix. There is one node for each component of X. The undirected graph
associated with P has no edge between Xj and Xj if and only if Ωjk = 0. The edge set is E = {(j, k) : Ωjk ̸= 0}. The
graph is G = (V,E) where V = {1, . . . , d} and E is the edge set. Given a random sample of vectors X1, . . . , Xn ∼ P
we want to estimate G. (Only the edge set needs to be estimated; the nodes are known.)
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Wang, Wainwright and Ramchandran (2010) found the minimax risk for estimating G under zero-one loss. Let
Gd,r(λ) denote all the multivariate Normals whose graphs have edge sets with degree at most r and such that

min
(i,j)∈E

|Ωjk|√
ΩjjΩkk

≥ λ.

The sample complexity n(d, r, λ) is the smallest sample size n needed to recover the true graph with high probability.
They show that for any λ ∈ [0, 1/2],

n(d, r, λ) > max

 log
(
d−r
2

)
− 1

4λ2
,

log
(
d
r

)
− 1

1
2

(
log
(
1 + rλ

1−λ

)
− rλ

1+(r−1)λ

)
 .

Thus, assuming λ ≈ 1/r, we get that n ≥ Cr2 log(d− r).

9.7 Deconvolution and Measurement Error
A problem has seems to have received little attention in the machine learning literature is deconvolution. Suppose
that X1, . . . , Xn ∼ P where P has density p. We have seen that the minimax rate for estimating p in squared error
loss is n−

2β
2β+1 where β is the assumed amount of smoothness. Suppose we cannot observe Xi directly but instead

we observe Xi with error. Thus, we observe Y1, . . . , Yn where

Yi = Xi + ϵi, i = 1, . . . , n.

The minimax rates for estimating p change drastically. A good account is given in Fan (1991). As an example, if
the noise ϵi is Gaussian, then Fan shows that the minimax risk satisfies

Rn ≥ C

(
1

log n

)β
,

which means that the problem is essentially hopeless.
Similar results hold for nonparametric regression. In the usual nonparametric regression problem we observe

Yi = m(Xi) + ϵi and we want to estimate the function m. If we observe X∗
i = Xi + δi instead of Xi then again the

minimax rates change drastically and are logarithmic of the δi’s are Normal (Fan and Truong 1993). This is known
as measurement error or errors in variables.

This is an interesting example where minimax theory reveals surprising and important insight.

9.8 Normal Means
Perhaps the best understood cases in minimax theory involve normal means. First suppose that X1, . . . , Xn ∼
N(θ, σ2) where σ2 is known. A function g is bowl-shaped if the sets {x : g(x) ≤ c} are convex and symmetric about
the origin. We will say that a loss function ℓ is bowl-shaped if ℓ(θ, θ̂) = g(θ − θ̂) for some bowl-shaped function g.

Theorem. The unique2 estimator that is minimax for every bowl-shaped loss function is the sample mean Xn.

For a proof, see Wolfowitz (1950).
Now consider estimating several normal means. Let Xj = θj + ϵj/

√
n for j = 1, . . . , n and suppose we and to

estimate θ = (θ1, . . . , θn) with loss function ℓ(θ̂, θ) =
∑n
j=1(θ̂j − θj)

2. Here, ϵ1, . . . , ϵn ∼ N(0, σ2). This is called the
normal means problem.

There are strong connections between the normal means problem and nonparametric learning. For example,
suppose we want to estimate a regression function f(x) and we observe data Zi = f(i/n) + δi where δi ∼ N(0, σ2).
Expand f in an othonormal basis: f(x) =

∑
j θjψj(x). An estimate of θj is Xj =

1
n

∑n
i=1 Zi ψj(i/n). It follows that

Xj ≈ N(θj , σ
2/n). This connection can be made very rigorous; see Brown and Low (1996).

The minimax risk depends on the assumptions about θ.

Theorem (Pinsker). 1. If Θn = Rn then Rn = σ2 and θ̂ = X = (X1, . . . , Xn) is minimax.
2Up to sets of measure 0.
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2. If Θn = {θ :
∑n
j θ

2
j ≤ C2} then

lim inf
n→∞

inf
θ̂

sup
θ∈Θn

R(θ̂, θ) =
σ2C2

σ2 + C2
.

Define the James-Stein estimator

θ̂JS =

(
1− (n− 2)σ2

1
n

∑n
j=1X

2
j

)
X.

Then

lim
n→∞

sup
θ∈Θn

R(θ̂JS, θ) =
σ2C2

σ2 + C2
.

Hence, θ̂JS is asymptotically minimax.

3. Let Xj = θj + ϵj for j = 1, 2, . . . , where ϵj ∼ N(0, σ2/n).

Θ =

{
θ :

∞∑
j=1

θ2ja
2
j ≤ C2

}
(12)

where a2j = (πj)2p. Let Rn denote the minimax risk. Then

min
n→∞

n
2p

2p+1Rn =
(σ
π

) 2p
2p+1

C
2

2p+1

(
p

p+ 1

) 2p
2p+1

(2p+ 1)
1

2p+1 .

Hence, Rn ≍ n−
2p

2p+1 . An asymptotically minimax estimator is the Pinsker estimator defined by θ̂ = (w1X1, w2X2, . . . , )
where wj = [1− (aj/µ)]+ and µ is determined by the equation

σ2

n

∑
j

aj(µ− aj)+ = C2.

The set Θ in (12) is called a Sobolev ellipsoid. This set corresponds to smooth functions in the function estimation
problem. The Pinsker estimator corresponds to estimating a function by smoothing. The main message to take away
from all of this is that minimax estimation under smoothness assumptions requires shrinking the data appropriately.

10 Adaptation
The results in this chapter provide minimax rates of convergence and estimators that achieve these rates. However,
the estimators depend on the assumed parameter space. For example, estimating a β-times differential regression
function requires using an estimator tailored to the assumed amount of smoothness to achieve the minimax rate
n−

2β
2β+1 . There are estimators that are adaptive, meaning that they achieve the minimax rate without the user

having to know the amount of smoothness. See, for example, Chapter 9 of Wasserman (2006) and the references
therein.

11 Summary
Minimax theory allows us to state precisely the best possible performance of any procedure under given conditions.
The key tool for finding lower bounds on the minimax risk is Fano’s inequality. Finding an upper bound usually
involves finding a specific estimator and computing its risk.
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