
Nonparametric Bayesian Methods
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인공지능을 위한 이론과 모델링, 2023 가을학기

The lecture note is a minor modification of the lecture notes from Prof. Larry Wasserman’s “Statistical Machine
Learning”.

Bayesian Inference
The philosophical distinction between Bayes and frequentists is deep. The rest of the lecture will follow the fre-
quentist framework, where, to us a probability is representing some type of long run frequency, i.e. when we say the
probability that our estimator is close to some unknown “true” parameter with probability at least 1−δ we are really
imagining repeating this (or some other) experiment many many times and then our guarantees will be correct for
at least 1 − δ of these experiments. Similarly, with confidence intervals, we imagine many people across the world
construct confidence intervals and our guarantee is that 95% of those intervals would trap the true parameter, i.e.
the goal of frequentist inference is to create procedures with long run guarantees.

Moreover, the guarantees should be uniform over θ if possible. For example, a confidence interval traps the true
value of θ with probability 1 − α, no matter what the true value of θ is. In frequentist inference, procedures are
random while parameters are fixed, unknown quantities.

In the Bayesian approach, probability is regarded as a measure of subjective degree of belief. One can view the
Bayesian approach as a way to manipulate beliefs. Beliefs are then assumed to follow the rules of normal probabilities
by a notion called coherence. In this framework, everything, including parameters, is regarded as random. These
procedures do not have to satisfy frequency guarantees.

A summary of the main ideas is in the table below.

Bayesian Frequentist
Probability subjective degree of belief limiting frequency
Goal analyze beliefs create procedures with frequency guarantees
θ random variable fixed
X random variable random variable

In frequentist inference the goal was: create procedures that have good frequency properties.
In Bayesian inference the goal is to write down a prior that captures your prior belief and compute the posterior;

then you are essentially done.

Bayesian confidence sets
In frequentist inference, a 1 − α confidence set/interval is a random set Cα that captures the parameter θ with
probability 1− α:

PX1,...,Xn∼Pθ
(θ ∈ Cα) = 1− α.

In Bayesian inference, a 1− α credible set/interval is a set Cα to which the posterior assigns 1− α mass:

P(θ ∈ Cα|X1, . . . , Xn) = 1− α.

Once again notice that the thing that is random is θ, the data is conditioned on (i.e. fixed). The set Cα is fixed
(i.e. not random) here, unlike in a frequentist confidence interval. These intervals do not typically have frequency
guarantees.
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What is Nonparametric Bayes?
In parametric Bayesian inference we have a model M = {f(y|θ) : θ ∈ Θ} and data Y1, . . . , Yn ∼ f(y|θ). We put a
prior distribution π(θ) on the parameter θ and compute the posterior distribution using Bayes’ rule:

π(θ|Y ) =
Ln(θ)π(θ)

m(Y )
,

where Y = (Y1, . . . , Yn), Ln(θ) =
∏

i f(Yi|θ) is the likelihood function and

m(y) = m(y1, . . . , yn) =

∫
f(y1, . . . , yn|θ)π(θ)dθ =

∫ n∏
i=1

f(yi|θ)π(θ)dθ,

is the marginal distribution for the data induced by the prior and the model. We call m the induced marginal. The
model may be summarized as:

θ ∼ π,

Y1, . . . , Yn|θ ∼ f(y|θ).

We use the posterior to compute a point estimator such as the posterior mean of θ. We can also summarize the
posterior by drawing a large sample θ1, . . . , θN from the posterior π(θ|Y ) and the plotting the samples.

In nonparametric Bayesian inference, we replace the finite dimensional model {f(y|θ) : θ ∈ Θ} with an infinite
dimensional model such as

F =

{
f :

∫
(f ′′(y))2dy < ∞

}
.

Typically, neither the prior nor the posterior have a density function with respect to a dominating measure. But
the posterior is still well defined. On the other hand, if there is a dominating measure for a set of densities F then
the posterior can be found by Bayes theorem:

πn(A) ≡ P(f ∈ A|Y ) =

∫
A
Ln(f)dπ(f)∫

F Ln(f)dπ(f)
,

where A ⊂ F , Ln(f) =
∏

i f(Yi) is the likelihood function and π is a prior on F . If there is no dominating measure
for F then the posterior stull exists but cannot be obtained by simply applying Bayes’ theorem. An estimate of f
is the posterior mean

f̂(y) =

∫
f(y)dπn(f).

A posterior 1− α region is any set A such that πn(A) = 1− α.
Several questions arise:

1. How do we construct a prior π on an infinite dimensional set F?

2. How do we compute the posterior? How do we draw random samples from the posterior?

3. What are the properties of the posterior?

The answers to the third question are subtle. In finite dimensional models, the inferences provided by Bayesian
methods usually are similar to the inferences provided by frequentist methods. Hence, Bayesian methods inherit
many properties of frequentist methods: consistency, optimal rates of convergence, frequency coverage of interval
estimates etc. In infinite dimensional models, this is no longer true. The inferences provided by Bayesian methods
do not necessarily coincide with frequentist methods and they do not necessarily have properties like consistency,
optimal rates of convergence, or coverage guarantees.

Distributions on Infinite Dimensional Spaces
To use nonparametric Bayesian inference, we will need to put a prior π on an infinite dimensional space. For
example, suppose we observe X1, . . . , Xn ∼ F where F is an unknown distribution. We will put a prior π on the
set of all distributions F . In many cases, we cannot explicitly write down a formula for π as we can in a parametric
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model. This leads to the following problem: how we we describe a distribution π on an infinite dimensional space?
One way to describe such a distribution is to give an explicit algorithm for drawing from the distribution π. In a
certain sense, “knowing how to draw from π” takes the place of “having a formual for π.”

The Bayesian model can be written as

F ∼ π,

X1, . . . , Xn|F ∼ F.

The model and the prior induce a marginal distribution m for (X1, . . . , Xn),

m(A) =

∫
PF (A)dπ(F ),

where
PF (A) =

∫
IA(x1, . . . , xn)dF (x1) · · · dF (xn).

We call m the induced marginal. Another aspect of describing our Bayesian model will be to give an algorithm for
drawing X = (X1, . . . , Xn) from m.

After we observe the data X = (X1, . . . , Xn), we are interested in the posterior distribution

πn(A) ≡ π(F ∈ A|X1, . . . , Xn).

Once again, we will describe the posterior by giving an algorithm for drawing randonly from it.
To summarize: in some nonparametric Bayesian models, we describe the prior distribution by giving an algorithm

for sampling from the prior π, the marginal m and the posterior πn.

Three Nonparametric Problems
We will focus on two specific problems. The two problems and their most common frequentist and Bayesian solutions
are:

Statistical Problem Frequentist Approach Bayesian Approach
Estimating a cdf empirical cdf Dirichlet process
Estimating a density kernel smoother Dirichlet process mixture

Estimating a cdf
Let X1, . . . , Xn be a sample from an unknown cdf (cumulative distribution function) F where Xi ∈ R. The usual
frequentist estimate of F is the empirical distribution function

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x).

Then we will learn in the Concentration Inequality lecture, that for every ϵ > 0 and every F ,

PF

(
sup
x

|Fn(x)− F (x)| > ϵ

)
≤ 2e−2nϵ2 .

Setting ϵn =
√

1
2n log

(
2
α

)
we have

inf
F

PF (Fn(x)− ϵn ≤ F (x) ≤ Fn(x) + ϵn for all x) ≥ 1− α,

where the infimum is over all cdf’s F . Thus,
(
Fn(x)− ϵn, Fn(x) + ϵn

)
is a 1− α confidence band for F .

To estimate F from a Bayesian perspective we put a prior π on the set of all cdf’s F and then we compute the
posterior distribution on F given X = (X1, . . . , Xn). The most commonly used prior is the Dirichlet process prior
which was invented by the statistician Thomas Ferguson in 1973.
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V1 V2(1 − V1)
w1 w2
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…

Figure 1: The stick breaking process shows how the weights w1, w2, . . . from the Dirichlet process are constructed.
First we draw V1, V2, . . . ∼ Beta(1, α). Then we set w1 = V1, w2 = V2(1− V1), w3 = V3(1− V1)(1− V2), . . ..

The distribution π has two parameters, F0 and α and is denoted by DP(α, F0). The parameter F0 is a distribution
function and should be thought of as a prior guess at F . The number α controls how tightly concentrated the prior
is around F0. The model may be summarized as:

F ∼ π

X1, . . . , Xn|F ∼ F

where π = DP(α, F0).

How to Draw From the Prior. To draw a single random distribution F from Dir(α, F0) we do the following steps:

1. Draw s1, s2, . . . independently from F0.

2. Draw V1, V2, . . . ∼ Beta(1, α).

3. Let w1 = V1 and wj = Vj

∏j−1
i=1 (1− Vi) for j = 2, 3, . . ..

4. Let F be the discrete distribution that puts mass wj at sj , that is, F =
∑∞

j=1 wjδsj where δsj is a point mass
at sj .

It is clear from this description that F is discrete with probability one. The construction of the weights w1, w2, . . .
is often called the stick breaking process. Imagine we have a stick of unit length. Then w1 is obtained by breaking
the stick at the random point V1. The stick now has length 1− V1. The second weight w2 is obtained by breaking
a proportion V2 from the remaining stick. The process continues and generates the whole sequence of weights
w1, w2, . . .. See Figure 1. It can be shown that if F ∼ Dir(α, F0) then the mean is E(F ) = F0.

You might wonder why this distribution is called a Dirichlet process. The reason is this. Recall that a ran-
dom vector P = (P1, . . . , Pk) has a Dirichlet distribution with parameters (α, g1, . . . , gk) (with

∑
j gj = 1) if the

distribution of P has density

f(p1, . . . , pk) =
Γ(α)∏k

j=1 Γ(αgj)

k∏
j=1

p
αgj−1
j

over the simplex {p = (p1, . . . , pk) : pj ≥ 0,
∑

j pj = 1}. Let (A1, . . . , Ak) be any partition of R and let F ∼
DP(α, F0) be a random draw from the Dirichlet process. Let F (Aj) be the amount of mass that F puts on the
set Aj . Then (F (A1), . . . , F (Ak)) has a Dirichlet distribution with parameters (α, F0(A1), . . . , F0(Ak)). In fact, this
property characterizes the Dirichlet process.

How to Sample From the Marginal. One way is to draw from the induced marginal m is to sample F ∼ π
(as described above) and then draw X1, . . . , Xn from F . But there is an alternative method, called the Chinese
Restaurant Process or infinite Pólya urn (Blackwell 1973). The algorithm is as follows.

1. Draw X1 ∼ F0.

2. For i = 2, . . . , n: draw

Xi|X1, . . . Xi−1 =

{
X ∼ Fi−1 with probability i−1

i+α−1

X ∼ F0 with probability α
i+α−1

where Fi−1 is the empirical distribution of X1, . . . Xi−1.
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Figure 2: The Chinese restaurant process. A new person arrives and either sits at a table with people or sits at a
new table. The probability of sitting at a table is proportional to the number of people at the table.

The sample X1, . . . , Xn is likely to have ties since F is discrete. Let X∗
1 , X

∗
2 , . . . denote the unique values of

X1, . . . , Xn. Define cluster assignment variables c1, . . . , cn where ci = j means that Xi takes the value X∗
j . Let

nj = |{i : cj = j}|. Then we can write

Xn =

{
X∗

j with probability
nj

n+α−1

X ∼ F0 with probability α
n+α−1 .

In the metaphor of the Chinese restaurant process, when the nth customer walks into the restaurant, he sits at
table j with probability nj/(n+ α− 1), and occupies a new table with probability α/(n+ α− 1). The jth table is
associated with a “dish” X∗

j ∼ F0. Since the process is exchangeable, it induces (by ignoring X∗
j ) a partition over

the integers {1, . . . , n}, which corresponds to a clustering of the indices. See Figure 2.

How to Sample From the Posterior. Now suppose that X1, . . . , Xn ∼ F and that we place a Dir(α, F0) prior on
F .

Theorem. Let X1, . . . , Xn ∼ F and let F have prior π = Dir(α, F0). Then the posterior π for F given X1, . . . , Xn

is Dir
(
α+ n, Fn

)
where

Fn =
n

n+ α
Fn +

α

n+ α
F0. (1)

Since the posterior is again a Dirichlet process, we can sample from it as we did the prior but we replace α
with α + n and we replace F0 with Fn. Thus the posterior mean is Fn is a convex combination of the empirical
distribution and the prior guess F0. Also, the predictive distribution for a new observation Xn+1 is given by Fn.

To explore the posterior distribution, we could draw many random distribution functions from the posterior.
We could then numerically construct two functions Ln and Un such that

π
(
Ln(x) ≤ F (x) ≤ Un(x) for all x|X1, . . . , Xn

)
= 1− α.

This is a 1−α Bayesian confidence band for F . Keep in mind that this is not a frequentist confidence band. It does
not guarantee that

inf
F

PF (Ln(x) ≤ F (x) ≤ Un(x) for all x) = 1− α.

When n is large, Fn ≈ Fn in which case there is little difference between the Bayesian and frequentist approach.
The advantage of the frequentist approach is that it does not require specifiying α or F0.

Example. Figure 3 shows a simple example. The prior is DP(α, F0) with α = 10 and F0 = N(0, 1). The top left
plot shows the discrete probabilty function resulting from a single draw from the prior. The top right plot shows the
resulting cdf along with F0. The bottom left plot shows a few draws from the posterior based on n = 25 observations
from a N(5,1) distribution. The blue line is the posterior mean and the red line is the true F . The posterior is biased
because of the prior. The bottom right plot shows the empirical distribution function (solid black) the true F (red)
the Bayesian postrior mean (blue) and a 95 percnt frequentist confidence band.

Density Estimation
Let X1, . . . , Xn ∼ F where F has density f and Xi ∈ R. Our goal is to estimate f . The Dirichlet process is not a
useful prior for this problem since it produces discrete distributions which do not even have densities. Instead, we
use a modification of the Dirichlet process. But first, let us review the frequentist approach.
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Figure 3: The top left plot shows the discrete probabilty function resulting from a single draw from the prior which
is a DP(α, F0) with α = 10 and F0 = N(0, 1). The top right plot shows the resulting cdf along with F0. The bottom
left plot shows a few draws from the posterior based on n = 25 observations from a N(5,1) distribution. The blue
line is the posterior mean and the red line is the true F . The posterior is biased because of the prior. The bottom
right plot shows the empirical distribution function (solid black) the true F (red) the Bayesian postrior mean (blue)
and a 95 percnt frequentist confidence band.

The most common frequentist estimator is the kernel estimator

f̂(x) =
1

n

n∑
i=1

1

h
K

(
x−Xi

h

)
,

where K is a kernel and h is the bandwidth. A related method for estimating a density is to use a mixture model

f(x) =

k∑
j=1

wjf(x; θj).

For example, of f(x; θ) is Normal then θ = (µ, σ). The kernel estimator can be thought of as a mixture with n
components. In the Bayesian approach we would put a prior on θ1, . . . , θk, on w1, . . . , wk and a prior on k. We could
be more ambitious and use an infinite mixture

f(x) =

∞∑
j=1

wjf(x; θj).

As a prior for the parameters we could take θ1, θ2, . . . to be drawn from some F0 and we could take w1, w2, . . . ,
to be drawn from the stick breaking prior. (F0 typically has parameters that require further priors.) This infinite
mixture model is known as the Dirichlet process mixture model. This infinite mixture is the same as the random
distribution F ∼ DP(α, F0) which had the form F =

∑∞
j=1 wjδθj except that the point mass distributions δθj are

replaced by smooth densities f(x|θj).
The model may be re-expressed as:

F ∼ DP(α, F0),

θ1, . . . , θn|F ∼ F,

Xi|θi ∼ f(x|θi), i = 1, . . . , n.

(In practice, F0 itself has free parameters which also require priors.) Note that in the DPM, the parameters θi of
the mixture are sampled from a Dirichlet process. The data Xi are not sampled from a Dirichlet process. Because
F is sampled from from a Dirichlet process, it will be discrete. Hence there will be ties among the θi’s. (Recall our
erlier discussion of the Chinese Restaurant Process.) The k < n distinct values of θi can be thought of as defining
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Figure 4: Samples from a Dirichlet process mixture model with Gaussian generator, n = 500.

clusters. The beauty of this model is that the discreteness of F automatically creates a clustering of the θj ’s. In
other words, we have implicitly created a prior on k, the number of distinct θj ’s.

How to Sample From the Prior. Draw θ1, θ2, . . . , F0 and draw w1, w2, . . . , from the stsick breaking process. Set
f(x) =

∑∞
j=1 wjf(x; θj). The density f is a random draw from the prior. We could repeat this process many times

resulting in many randomly drawn densities from the prior. Plotting these densities could give some intuition about
the structure of the prior.

How to Sample From the Prior Marginal. The prior marginal m is

m(x1, x2, . . . , xn) =

∫ n∏
i=1

f(xi|F ) dπ(F )

=

∫ n∏
i=1

(∫
f(xi|θ) p(θ|F ) dF (θ)

)
dP (G).

If we want to draw a sample from m, we first draw F from a Dirichlet process with parameters α and F0, and then
generate θi independently from this realization. Then we sample Xi ∼ f(x|θi).

As before, we can also use the Chinese restaurant representation to draw the θj ’s sequentially. Given θ1, . . . , θi−1

we draw θj from

αF0(·) +
n−1∑
i=1

δθi(·).

Let θ∗j denote the unique values among the θi, with nj denoting the number of elements in the cluster for parameter
θ∗i ; that is, if c1, c2, . . . , cn−1 denote the cluster assignments θi = θ∗ci then nj = |{i : ci = j}|. Then we can write

θn =

{
θ∗j with probability nj

n+α−1 ,

θ ∼ F0 with probability α
n+α−1 .

How to Sample From the Posterior. We sample from the posterior by Gibbs sampling. We do not cover this in
this class.

Theoretical Properties of Nonparametric Bayes
In this section we briefly discuss some theoretical properties of nonparametric Bayesian methods. We will focus
on density estimation. In frequentist nonparametric inference, procedures are required to have certain guarantees
such as consistency and minimaxity. Similar reasoning can be applied to Bayesian procedures. It is desirable, for
example, that the posterior distribution πn has mass that is concentrated near the true density function f . More
specifically, we can ask three specific questions:
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1. Is the posterior consistent?

2. Does posterior concentrate at the optimal rate?

3. Does posterior have correct coverage?

Consistency
Let f0 denote the true density. By consistency we mean that, when f0 ∈ A, πn(A) should converge, in some sense,
to 1. According to Doob’s theorem, consistency holds under very weak conditions.

To state Doob’s theorem we need some notation. The prior π and the model define a joint distribution µn on
sequences Y n = (Y1, . . . , Yn), namely, for any B ∈ Rn,1

µn(Yn ∈ B) =

∫
P(Y n ∈ B|f)dπ(f) =

∫
B

f(y1) · · · f(yn)dπ(f). (2)

In fact, the model and prior determine a joint distribution µ on the set of infinite sequences2 Y∞ = {Y ∞ =
(y1, y2, . . . , )}.

Theorem (Doob 1949). For every measurable A,

µ
(
lim
n→∞

πn(A) = I(f0 ∈ A)
)
= 1.

By Doob’s theorem, consistency holds except on a set of probability zero. This sounds good but it isn’t; consider
the following example.

Example. Let Y1, . . . , Yn ∼ N(θ, 1). Let the prior π be a point mass at θ = 0. Then the posterior is point mass at
θ = 0. This posterior is inconsistent on the set N = R−{0}. This set has probability 0 under the prior so this does
not contradict Doob’s theorem. But clearly the posterior is useless.

Rates of Convergence
Example. Consider the Normal means model

Yi = θi +
1√
n
ϵi, i = 1, 2, . . . ,

where ϵi ∼ N(0, σ2). We want to infer θ = (θ1, θ2, . . .). Assume that θ is contained in the Sobolev space

θ ∈ Θ =

{
θ :

∑
i

θ2i i
2p < ∞

}
.

Then the estimator θ̂i = biYi is minimax for this Sobolev space where bi is an appropriate constant. In fact the
Efromovich-Pinsker estimator is adaptive minimax over the smoothness index p. A simple Bayesian analysis is to
use the prior π that treats each θi as independent random variables and θi ∼ N(0, τ2i ) where τ2i = i−2q. Have we
really defined a prior on Θ? We need to make sure that π(Θ) = 1. Fix K > 0. Then,

π
(∑

i

θ2i i
2p > K

)
≤

∑
i Eπ(θ

2
i )i

2p

K
=

∑
i τ

2
i i

2p

K
=

∑
i

1
i2(q−p)

K
.

The numerator is finite as long as q > p+ (1/2). Assuming q > p+ (1/2) we then see that π(
∑2

i i
2p > K) → 0 as

K → ∞ which shows that π puts all its mass on Θ.
But, as we see below, the condition q > p + (1/2) is guaranteed to yield a posterior with a suboptimal rate of

convergence. The following results are from Zhao (2000), Shen and Wasserman (2001), and Ghosal, Ghosh and van
der Vaart (2000).

Theorem. Put independent Normal priors θi ∼ N(0, τ2i ) where τ2i = i−2q. The Bayes estimator attains the optimal
rate only when q = p+ (1/2). But then:

π(Θ) = 0 and π(Θ|Y ) = 0.
1More precisely, for any Borel set B.
2More precisely, on an appropriate σ-field over the set of infinite sequences.
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Coverage
Suppose πn(A) = 1− α. Does this imply that

Pn
f0(f0 ∈ A) ≥ 1− α?

or even
lim inf
n→∞

inf
f0

Pn
f0(f0 ∈ A) ≥ 1− α?

For parametric models: if A = (−∞, a] and

P(θ ∈ A|data) = 1− α,

then
Pθ(θ ∈ A) = 1− α+O

(
1√
n

)
,

and, moreover, if we use the Jeffreys’ prior then

Pθ(θ ∈ A) = 1− α+O

(
1

n

)
.

Is the same true for nonparametric models? Unfortunately, no; counterexamples are given by Cox (1993) and
Freedman (1999). In their examples, one has:

πn(A) = 1− α,

but
lim inf
n→∞

inf
f0

Pf0(f0 ∈ A) = 0.
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